Biblio
Reactive synthesis with the ambitious goal of automatically synthesizing correct-by-construction controllers from high-level specifications, has recently attracted significant attention in system design and control. In practice, complex systems are often not constructed from scratch but from a set of existing building blocks. For example in robot motion planning, a robot usually has a number of predefined motion primitives that can be selected and composed to enforce a high-level objective. In this paper, we propose a novel framework for synthesis from a library of parametric and reactive controllers. Parameters allow us to take advantage of the symmetry in many synthesis problems. Reactivity of the controllers takes into account that the environment may be dynamic and potentially adversarial. We first show how these controllers can be automatically constructed from parametric objectives specified by the user to form a library of parametric and reactive controllers. We then give a synthesis algorithm that selects and instantiates controllers from the library in order to satisfy a given linear temporal logic objective. We implement our algorithms symbolically and illustrate the potential of our method by applying it to an autonomous vehicle case study.