Biblio

Filters: Author is Guo, Fuchun  [Clear All Filters]
2020-09-04
Zhao, Zhen, Lai, Jianchang, Susilo, Willy, Wang, Baocang, Hu, Yupu, Guo, Fuchun.  2019.  Efficient Construction for Full Black-Box Accountable Authority Identity-Based Encryption. IEEE Access. 7:25936—25947.

Accountable authority identity-based encryption (A-IBE), as an attractive way to guarantee the user privacy security, enables a malicious private key generator (PKG) to be traced if it generates and re-distributes a user private key. Particularly, an A-IBE scheme achieves full black-box security if it can further trace a decoder box and is secure against a malicious PKG who can access the user decryption results. In PKC'11, Sahai and Seyalioglu presented a generic construction for full black-box A-IBE from a primitive called dummy identity-based encryption, which is a hybrid between IBE and attribute-based encryption (ABE). However, as the complexity of ABE, their construction is inefficient and the size of private keys and ciphertexts in their instantiation is linear in the length of user identity. In this paper, we present a new efficient generic construction for full black-box A-IBE from a new primitive called token-based identity-based encryption (TB-IBE), without using ABE. We first formalize the definition and security model for TB-IBE. Subsequently, we show that a TB-IBE scheme satisfying some properties can be converted to a full black-box A-IBE scheme, which is as efficient as the underlying TB-IBE scheme in terms of computational complexity and parameter sizes. Finally, we give an instantiation with the computational complexity as O(1) and the constant size master key pair, private keys, and ciphertexts.

2017-10-27
Susilo, Willy, Chen, Rongmao, Guo, Fuchun, Yang, Guomin, Mu, Yi, Chow, Yang-Wai.  2016.  Recipient Revocable Identity-Based Broadcast Encryption: How to Revoke Some Recipients in IBBE Without Knowledge of the Plaintext. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :201–210.
In this paper, we present the notion of recipient-revocable identity-based broadcast encryption scheme. In this notion, a content provider will produce encrypted content and send them to a third party (which is a broadcaster). This third party will be able to revoke some identities from the ciphertext. We present a security model to capture these requirements, as well as a concrete construction. The ciphertext consists of k+3 group elements, assuming that the maximum number of revocation identities is k. That is, the ciphertext size is linear in the maximal size of R, where R is the revocation identity set. However, we say that the additional elements compared to that from an IBBE scheme are only for the revocation but not for decryption. Therefore, the ciphertext sent to the users for decryption will be of constant size (i.e.,3 group elements). Finally, we present the proof of security of our construction.