Biblio
Filters: Author is Buchmann, Johannes [Clear All Filters]
LINCOS: A Storage System Providing Long-Term Integrity, Authenticity, and Confidentiality. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. :461–468.
.
2017. The amount of digital data that requires long-term protection of integrity, authenticity, and confidentiality grows rapidly. Examples include electronic health records, genome data, and tax data. In this paper we present the secure storage system LINCOS, which provides protection of integrity, authenticity, and confidentiality in the long-term, i.e., for an indefinite time period. It is the first such system. It uses the long-term integrity scheme COPRIS, which is also presented here and is the first such scheme that does not leak any information about the protected data. COPRIS uses information-theoretic hiding commitments for confidentiality-preserving integrity and authenticity protection. LINCOS uses proactive secret sharing for confidential storage of secret data. We also present implementations of COPRIS and LINCOS. A special feature of our LINCOS implementation is the use of quantum key distribution and one-time pad encryption for information-theoretic private channels within the proactive secret sharing protocol. The technological platform for this is the Tokyo QKD Network, which is one of worlds most advanced networks of its kind. Our experimental evaluation establishes the feasibility of LINCOS and shows that in view of the expected progress in quantum communication technology, LINCOS is a promising solution for protecting very sensitive data in the cloud.
High-Performance and Lightweight Lattice-Based Public-Key Encryption. Proceedings of the 2Nd ACM International Workshop on IoT Privacy, Trust, and Security. :2–9.
.
2016. In the emerging Internet of Things, lightweight public-key cryptography is an essential component for many cost-efficient security solutions. Since conventional public-key schemes, such as ECC and RSA, remain expensive and energy hungry even after aggressive optimization, this work investigates a possible alternative. In particular, we show the practical potential of replacing the Gaussian noise distribution in the Ring-LWE based encryption scheme by Lindner and Peikert/Lyubashevsky et al. with a binary distribution. When parameters are carefully chosen, our construction is resistant against any state-of-the-art cryptanalytic techniques (e.g., attacks on original Ring-LWE or NTRU) and suitable for low-cost scenarios. In the end, our scheme can enable public-key encryption even on very small and low-cost 8-bit (ATXmega128) and 32-bit (Cortex-M0) microcontrollers.