Biblio

Filters: Author is Jang, Jae-Won  [Clear All Filters]
2019-02-14
Iyengar, Anirudh S., Vontela, Deepak, Reddy, Ithihasa, Ghosh, Swaroop, Motaman, Syedhamidreza, Jang, Jae-Won.  2018.  Threshold Defined Camouflaged Gates in 65Nm Technology for Reverse Engineering Protection. Proceedings of the International Symposium on Low Power Electronics and Design. :6:1-6:6.

Due to the ever-increasing threat of Reverse Engineering (RE) of Intellectual Property (IP) for malicious gains, camouflaging of logic gates is becoming very important. In this paper, we present experimental demonstration of transistor threshold voltage-defined switch [2] based camouflaged logic gates that can hide six logic functionalities i.e. NAND, AND, NOR, OR, XOR and XNOR. The proposed gates can be used to design the IP, forcing an adversary to perform brute-force guess-and-verify of the underlying functionality–-increasing the RE effort. We propose two flavors of camouflaging, one employing only a pass transistor (NMOS-switch) and the other utilizing a full pass transistor (CMOS-switch). The camouflaged gates are used to design Ring-Oscillators (RO) in ST 65nm technology, one for each functionality, on which we have performed temperature, voltage, and process-variation analysis. We observe that CMOS-switch based camouflaged gate offers a higher performance (\textasciitilde1.5-8X better) than NMOS-switch based gate at an added area cost of only 5%. The proposed gates show functionality till 0.65V. We are also able to reclaim lost performance by dynamically changing the switch gate voltage and show that robust operation can be achieved at lower voltage and under temperature fluctuation.

2017-11-01
Jang, Jae-Won, Ghosh, Swaroop.  2016.  Performance Impact of Magnetic and Thermal Attack on STTRAM and Low-Overhead Mitigation Techniques. Proceedings of the 2016 International Symposium on Low Power Electronics and Design. :136–141.
In this paper, we analyze the fundamental vulnerabilities of Spin-Torque-Transfer RAM on magnetic field and temperature that can be exploited by adversaries with an intent to trigger soft performance failures. We present novel attack vectors and their impact on memory performance (i.e., read, write and retention). We propose a novel low-overhead clock frequency-adaptation technique to mitigate the attack. Our analysis indicate slowing the clock frequency by 85% restores 170 mV of sense margin under 300 Oe DC magnetic field. In addition, 66% operating clock slowdown allows STTRAM to tolerate over 300 Oe AC magnetic field.