Biblio

Filters: Author is Fiedler, R.  [Clear All Filters]
2018-02-06
Settanni, G., Shovgenya, Y., Skopik, F., Graf, R., Wurzenberger, M., Fiedler, R..  2017.  Acquiring Cyber Threat Intelligence through Security Information Correlation. 2017 3rd IEEE International Conference on Cybernetics (CYBCONF). :1–7.

Cyber Physical Systems (CPS) operating in modern critical infrastructures (CIs) are increasingly being targeted by highly sophisticated cyber attacks. Threat actors have quickly learned of the value and potential impact of targeting CPS, and numerous tailored multi-stage cyber-physical attack campaigns, such as Advanced Persistent Threats (APTs), have been perpetrated in the last years. They aim at stealthily compromising systems' operations and cause severe impact on daily business operations such as shutdowns, equipment damage, reputation damage, financial loss, intellectual property theft, and health and safety risks. Protecting CIs against such threats has become as crucial as complicated. Novel distributed detection and reaction methodologies are necessary to effectively uncover these attacks, and timely mitigate their effects. Correlating large amounts of data, collected from a multitude of relevant sources, is fundamental for Security Operation Centers (SOCs) to establish cyber situational awareness, and allow to promptly adopt suitable countermeasures in case of attacks. In our previous work we introduced three methods for security information correlation. In this paper we define metrics and benchmarks to evaluate these correlation methods, we assess their accuracy, and we compare their performance. We finally demonstrate how the presented techniques, implemented within our cyber threat intelligence analysis engine called CAESAIR, can be applied to support incident handling tasks performed by SOCs.

2017-11-27
Settanni, G., Shovgenya, Y., Skopik, F., Graf, R., Wurzenberger, M., Fiedler, R..  2016.  Correlating cyber incident information to establish situational awareness in Critical Infrastructures. 2016 14th Annual Conference on Privacy, Security and Trust (PST). :78–81.

Protecting Critical Infrastructures (CIs) against contemporary cyber attacks has become a crucial as well as complex task. Modern attack campaigns, such as Advanced Persistent Threats (APTs), leverage weaknesses in the organization's business processes and exploit vulnerabilities of several systems to hit their target. Although their life-cycle can last for months, these campaigns typically go undetected until they achieve their goal. They usually aim at performing data exfiltration, cause service disruptions and can also undermine the safety of humans. Novel detection techniques and incident handling approaches are therefore required, to effectively protect CI's networks and timely react to this type of threats. Correlating large amounts of data, collected from a multitude of relevant sources, is necessary and sometimes required by national authorities to establish cyber situational awareness, and allow to promptly adopt suitable countermeasures in case of an attack. In this paper we propose three novel methods for security information correlation designed to discover relevant insights and support the establishment of cyber situational awareness.

2015-04-30
Skopik, F., Settanni, G., Fiedler, R., Friedberg, I..  2014.  Semi-synthetic data set generation for security software evaluation. Privacy, Security and Trust (PST), 2014 Twelfth Annual International Conference on. :156-163.

Threats to modern ICT systems are rapidly changing these days. Organizations are not mainly concerned about virus infestation, but increasingly need to deal with targeted attacks. This kind of attacks are specifically designed to stay below the radar of standard ICT security systems. As a consequence, vendors have begun to ship self-learning intrusion detection systems with sophisticated heuristic detection engines. While these approaches are promising to relax the serious security situation, one of the main challenges is the proper evaluation of such systems under realistic conditions during development and before roll-out. Especially the wide variety of configuration settings makes it hard to find the optimal setup for a specific infrastructure. However, extensive testing in a live environment is not only cumbersome but usually also impacts daily business. In this paper, we therefore introduce an approach of an evaluation setup that consists of virtual components, which imitate real systems and human user interactions as close as possible to produce system events, network flows and logging data of complex ICT service environments. This data is a key prerequisite for the evaluation of modern intrusion detection and prevention systems. With these generated data sets, a system's detection performance can be accurately rated and tuned for very specific settings.