Biblio

Filters: Author is Ghanbari, R.  [Clear All Filters]
2017-11-27
Ghanbari, R., Jalili, M., Yu, X..  2016.  Analysis of cascaded failures in power networks using maximum flow based complex network approach. IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society. :4928–4932.

Power networks can be modeled as networked structures with nodes representing the bus bars (connected to generator, loads and transformers) and links representing the transmission lines. In this manuscript we study cascaded failures in power networks. As network structures we consider IEEE 118 bus network and a random spatial model network with similar properties to IEEE 118 bus network. A maximum flow based model is used to find the central edges. We study cascaded failures triggered by both random and targeted attacks to the edges. In the targeted attack the edge with the maximum centrality value is disconnected from the network. A number of metrics including the size of the largest connected component, the number of failed edges, the average maximum flow and the global efficiency are studied as a function of capacity parameter (edge critical load is proportional to its capacity parameter and nominal centrality value). For each case we identify the critical capacity parameter by which the network shows resilient behavior against failures. The experiments show that one should further protect the network for a targeted attack as compared to a random failure.