Biblio

Filters: Author is Hariri, Salim  [Clear All Filters]
2022-12-09
Tunc, Cihan, Hariri, Salim.  2022.  Self-Protection for Unmanned Autonomous Vehicles (SP-UAV): Design Overview and Evaluation. 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). :128—132.
Unmanned autonomous vehicles (UAVs) have been receiving high interest lately due to their wide range of potential deployment options that can touch all aspects of our life and economy, such as transportation, delivery, healthcare, surveillance. However, UAVs have also introduced many new vulnerabilities and attack surfaces that can be exploited by cyberattacks. Due to their complexity, autonomous operations, and being relatively new technologies, cyberattacks can be persistent, complex, and can propagate rapidly to severely impact the main UAV functions such as mission management, support, processing operations, maneuver operations, situation awareness. Furthermore, such cyberattacks can also propagate among other UAVs or even their control stations and may even endanger human life. Hence, we need self-protection techniques with an autonomic management approach. In this paper we present our approach to implement self-protection of UAVs (SP-UAV) such that they can continue their critical functions despite cyberattacks targeting UAV operations or services. We present our design approach and implementation using a unified management interface based on three ports: Configuration, observer, and control ports. We have implemented the SP-UAV using C and demonstrated using different attack scenarios how we can apply autonomic responses without human involvement to tolerate cyberattacks against the UAV operations.
2022-01-25
Rouff, Christopher, Watkins, Lanier, Sterritt, Roy, Hariri, Salim.  2021.  SoK: Autonomic Cybersecurity - Securing Future Disruptive Technologies. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :66—72.
This paper is a systemization of knowledge of autonomic cybersecurity. Disruptive technologies, such as IoT, AI and autonomous systems, are becoming more prevalent and often have little or no cybersecurity protections. This lack of security is contributing to the expanding cybersecurity attack surface. The autonomic computing initiative was started to address the complexity of administering complex computing systems by making them self-managing. Autonomic systems contain attributes to address cyberattacks, such as self-protecting and self-healing that can secure new technologies. There has been a number of research projects on autonomic cybersecurity, with different approaches and target technologies, many of them disruptive. This paper reviews autonomic computing, analyzes research on autonomic cybersecurity, and provides a systemization of knowledge of the research. The paper concludes with identification of gaps in autonomic cybersecurity for future research.
2021-09-16
Alshawi, Amany, Satam, Pratik, Almoualem, Firas, Hariri, Salim.  2020.  Effective Wireless Communication Architecture for Resisting Jamming Attacks. IEEE Access. 8:176691–176703.
Over time, the use of wireless technologies has significantly increased due to bandwidth improvements, cost-effectiveness, and ease of deployment. Owing to the ease of access to the communication medium, wireless communications and technologies are inherently vulnerable to attacks. These attacks include brute force attacks such as jamming attacks and those that target the communication protocol (Wi-Fi and Bluetooth protocols). Thus, there is a need to make wireless communication resilient and secure against attacks. Existing wireless protocols and applications have attempted to address the need to improve systems security as well as privacy. They have been highly effective in addressing privacy issues, but ineffective in addressing security threats like jamming and session hijacking attacks and other types of Denial of Service Attacks. In this article, we present an ``architecture for resilient wireless communications'' based on the concept of Moving Target Defense. To increase the difficulty of launching successful attacks and achieve resilient operation, we changed the runtime characteristics of wireless links, such as the modulation type, network address, packet size, and channel operating frequency. The architecture reduces the overhead resulting from changing channel configurations using two communication channels, in which one is used for communication, while the other acts as a standby channel. A prototype was built using Software Defined Radio to test the performance of the architecture. Experimental evaluations showed that the approach was resilient against jamming attacks. We also present a mathematical analysis to demonstrate the difficulty of performing a successful attack against our proposed architecture.
Conference Name: IEEE Access
2021-08-02
Fargo, Farah, Franza, Olivier, Tunc, Cihan, Hariri, Salim.  2020.  VM Introspection-based Allowlisting for IaaS. 2020 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :1—4.
Cloud computing has become the main backend of the IT infrastructure as it provides ubiquitous and on-demand computing to serve to a wide range of users including end-users and high-performance demanding agencies. The users can allocate and free resources allocated for their Virtual Machines (VMs) as needed. However, with the rapid growth of interest in cloud computing systems, several issues have arisen especially in the domain of cybersecurity. It is a known fact that not only the malicious users can freely allocate VMs, but also they can infect victims' VMs to run their own tools that include cryptocurrency mining, ransomware, or cyberattacks against others. Even though there exist intrusion detection systems (IDS), running an IDS on every VM can be a costly process and it would require fine configuration that only a small subset of the cloud users are knowledgeable about. Therefore, to overcome this challenge, in this paper we present a VM introspection based allowlisting method to be deployed and managed directly by the cloud providers to check if there are any malicious software running on the VMs with minimum user intervention. Our middleware monitors the processes and if it detects unknown events, it will notify the users and/or can take action as needed.
2021-06-24
Satam, Shalaka, Satam, Pratik, Hariri, Salim.  2020.  Multi-level Bluetooth Intrusion Detection System. 2020 IEEE/ACS 17th International Conference on Computer Systems and Applications (AICCSA). :1—8.
Large scale deployment of IoT devices has made Bluetooth Protocol (IEEE 802.15.1) the wireless protocol of choice for close-range communications. Devices such as keyboards, smartwatches, headphones, computer mouse, and various wearable connecting devices use Bluetooth network for communication. Moreover, Bluetooth networks are widely used in medical devices like heart monitors, blood glucose monitors, asthma inhalers, and pulse oximeters. Also, Bluetooth has replaced cables for wire-free equipment in a surgical environment. In hospitals, devices communicate with one another, sharing sensitive and critical information over Bluetooth scatter-networks. Thus, it is imperative to secure the Bluetooth networks against attacks like Man in the Middle attack (MITM), eavesdropping attacks, and Denial of Service (DoS) attacks. This paper presents a Multi-Level Bluetooth Intrusion Detection System (ML-BIDS) to detect malicious attacks against Bluetooth devices. In the ML-IDS framework, we perform continuous device identification and authorization in Bluetooth networks following the zero-trust principle [ref]. The ML-BIDS framework includes an anomaly-based intrusion detection system (ABIDS) to detect attacks on the Bluetooth protocol. The ABIDS tracks the normal behavior of the Bluetooth protocol by comparing it with the Bluetooth protocol state machine. Bluetooth frame flows consisting of Bluetooth frames received over 10 seconds are split into n-grams to track the current state of the protocol in the state machine. We evaluated the performance of several machine learning algorithms like C4.5, Adaboost, SVM, Naive Bayes, Jrip, and Bagging to classify normal Bluetooth protocol flows from abnormal Bluetooth protocol flows. The ABIDS detects attacks on Bluetooth protocols with a precision of up to 99.6% and recall up to 99.6%. The ML-BIDS framework also performs whitelisting of the devices on the Bluetooth network to prevent unauthorized devices from connecting to the network. ML-BIDS uses a combination of the Bluetooth Address, mac address, and IP address to uniquely identify a Bluetooth device connecting to the network, and hence ensuring only authorized devices can connect to the Bluetooth network.
Wu, Chongke, Shao, Sicong, Tunc, Cihan, Hariri, Salim.  2020.  Video Anomaly Detection using Pre-Trained Deep Convolutional Neural Nets and Context Mining. 2020 IEEE/ACS 17th International Conference on Computer Systems and Applications (AICCSA). :1—8.
Anomaly detection is critically important for intelligent surveillance systems to detect in a timely manner any malicious activities. Many video anomaly detection approaches using deep learning methods focus on a single camera video stream with a fixed scenario. These deep learning methods use large-scale training data with large complexity. As a solution, in this paper, we show how to use pre-trained convolutional neural net models to perform feature extraction and context mining, and then use denoising autoencoder with relatively low model complexity to provide efficient and accurate surveillance anomaly detection, which can be useful for the resource-constrained devices such as edge devices of the Internet of Things (IoT). Our anomaly detection model makes decisions based on the high-level features derived from the selected embedded computer vision models such as object classification and object detection. Additionally, we derive contextual properties from the high-level features to further improve the performance of our video anomaly detection method. We use two UCSD datasets to demonstrate that our approach with relatively low model complexity can achieve comparable performance compared to the state-of-the-art approaches.
2020-08-24
Fargo, Farah, Franza, Olivier, Tunc, Cihan, Hariri, Salim.  2019.  Autonomic Resource Management for Power, Performance, and Security in Cloud Environment. 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA). :1–4.
High performance computing is widely used for large-scale simulations, designs and analysis of critical problems especially through the use of cloud computing systems nowadays because cloud computing provides ubiquitous, on-demand computing capabilities with large variety of hardware configurations including GPUs and FPGAs that are highly used for high performance computing. However, it is well known that inefficient management of such systems results in excessive power consumption affecting the budget, cooling challenges, as well as reducing reliability due to the overheating and hotspots. Furthermore, considering the latest trends in the attack scenarios and crypto-currency based intrusions, security has become a major problem for high performance computing. Therefore, to address both challenges, in this paper we present an autonomic management methodology for both security and power/performance. Our proposed approach first builds knowledge of the environment in terms of power consumption and the security tools' deployment. Next, it provisions virtual resources so that the power consumption can be reduced while maintaining the required performance and deploy the security tools based on the system behavior. Using this approach, we can utilize a wide range of secure resources efficiently in HPC system, cloud computing systems, servers, embedded systems, etc.
2020-08-13
Shao, Sicong, Tunc, Cihan, Al-Shawi, Amany, Hariri, Salim.  2019.  One-Class Classification with Deep Autoencoder Neural Networks for Author Verification in Internet Relay Chat. 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA). :1—8.
Social networks are highly preferred to express opinions, share information, and communicate with others on arbitrary topics. However, the downside is that many cybercriminals are leveraging social networks for cyber-crime. Internet Relay Chat (IRC) is the important social networks which can grant the anonymity to users by allowing them to connect channels without sign-up process. Therefore, IRC has been the playground of hackers and anonymous users for various operations such as hacking, cracking, and carding. Hence, it is urgent to study effective methods which can identify the authors behind the IRC messages. In this paper, we design an autonomic IRC monitoring system, performing recursive deep learning for classifying threat levels of messages and develop a novel author verification approach with one-class classification with deep autoencoder neural networks. The experimental results show that our approach can successfully perform effective author verification for IRC users.
2017-12-12
De La Peña Montero, Fabian, Hariri, Salim.  2017.  Autonomic and Integrated Management for Proactive Cyber Security (AIM-PSC). Companion Proceedings of the10th International Conference on Utility and Cloud Computing. :107–112.

The complexity, multiplicity, and impact of cyber-attacks have been increasing at an alarming rate despite the significant research and development investment in cyber security products and tools. The current techniques to detect and protect cyber infrastructures from these smart and sophisticated attacks are mainly characterized as being ad hoc, manual intensive, and too slow. We present in this paper AIM-PSC that is developed jointly by researchers at AVIRTEK and The University of Arizona Center for Cloud and Autonomic Computing that is inspired by biological systems, which can efficiently handle complexity, dynamism and uncertainty. In AIM-PSC system, an online monitoring and multi-level analysis are used to analyze the anomalous behaviors of networks, software systems and applications. By combining the results of different types of analysis using a statistical decision fusion approach we can accurately detect any types of cyber-attacks with high detection and low false alarm rates and proactively respond with corrective actions to mitigate their impacts and stop their propagation.