Biblio
Image style transfer is an increasingly interesting topic in computer vision where the goal is to map images from one style to another. In this paper, we propose a new framework called Combined Layer GAN as a solution of dealing with image style transfer problem. Specifically, the edge-constraint and color-constraint are proposed and explored in the GAN based image translation method to improve the performance. The motivation of the work is that color and edge are fundamental vision factors for an image, while in the traditional deep network based approach, there is a lack of fine control of these factors in the process of translation and the performance is degraded consequently. Our experiments and evaluations show that our novel method with the edge and color constrains is more stable, and significantly improves the performance compared with the traditional methods.
Insider threat is a significant security risk for information system, and detection of insider threat is a major concern for information system organizers. Recently existing work mainly focused on the single pattern analysis of user single-domain behavior, which were not suitable for user behavior pattern analysis in multi-domain scenarios. However, the fusion of multi-domain irrelevant features may hide the existence of anomalies. Previous feature learning methods have relatively a large proportion of information loss in feature extraction. Therefore, this paper proposes a hybrid model based on the deep belief network (DBN) to detect insider threat. First, an unsupervised DBN is used to extract hidden features from the multi-domain feature extracted by the audit logs. Secondly, a One-Class SVM (OCSVM) is trained from the features learned by the DBN. The experimental results on the CERT dataset demonstrate that the DBN can be used to identify the insider threat events and it provides a new idea to feature processing for the insider threat detection.
Modbus over TCP/IP is one of the most popular industrial network protocol that are widely used in critical infrastructures. However, vulnerability of Modbus TCP protocol has attracted widely concern in the public. The traditional intrusion detection methods can identify some intrusion behaviors, but there are still some problems. In this paper, we present an innovative approach, SD-IDS (Stereo Depth IDS), which is designed for perform real-time deep inspection for Modbus TCP traffic. SD-IDS algorithm is composed of two parts: rule extraction and deep inspection. The rule extraction module not only analyzes the characteristics of industrial traffic, but also explores the semantic relationship among the key field in the Modbus TCP protocol. The deep inspection module is based on rule-based anomaly intrusion detection. Furthermore, we use the online test to evaluate the performance of our SD-IDS system. Our approach get a low rate of false positive and false negative.