Biblio

Filters: Author is Fotiou, N.  [Clear All Filters]
2017-12-12
Polyzos, G. C., Fotiou, N..  2017.  Blockchain-Assisted Information Distribution for the Internet of Things. 2017 IEEE International Conference on Information Reuse and Integration (IRI). :75–78.

The Internet of Things (IoT) is envisioned to include billions of pervasive and mission-critical sensors and actuators connected to the (public) Internet. This network of smart devices is expected to generate and have access to vast amounts of information, creating unique opportunities for novel applications but, at the same time raising significant privacy and security concerns that impede its further adoption and development. In this paper, we explore the potential of a blockchain-assisted information distribution system for the IoT. We identify key security requirements of such a system and we discuss how they can be satisfied using blockchains and smart contracts. Furthermore, we present a preliminary design of the system and we identify enabling technologies.

2018-02-21
Fotiou, N., Siris, V. A., Xylomenos, G., Polyzos, G. C., Katsaros, K. V., Petropoulos, G..  2017.  Edge-ICN and its application to the Internet of Things. 2017 IFIP Networking Conference (IFIP Networking) and Workshops. :1–6.

While research on Information-Centric Networking (ICN) flourishes, its adoption seems to be an elusive goal. In this paper we propose Edge-ICN: a novel approach for deploying ICN in a single large network, such as the network of an Internet Service Provider. Although Edge-ICN requires nothing beyond an SDN-based network supporting the OpenFlow protocol, with ICN-aware nodes only at the edges of the network, it still offers the same benefits as a clean-slate ICN architecture but without the deployment hassles. Moreover, by proxying legacy traffic and transparently forwarding it through the Edge-ICN nodes, all existing applications can operate smoothly, while offering significant advantages to applications such as native support for scalable anycast, multicast, and multi-source forwarding. In this context, we show how the proposed functionality at the edge of the network can specifically benefit CoAP-based IoT applications. Our measurements show that Edge-ICN induces on average the same control plane overhead for name resolution as a centralized approach, while also enabling IoT applications to build on anycast, multicast, and multi-source forwarding primitives.