Biblio

Filters: Author is Zheng, J.  [Clear All Filters]
2018-02-06
Zheng, J., Li, Y., Hou, Y., Gao, M., Zhou, A..  2017.  BMNR: Design and Implementation a Benchmark for Metrics of Network Robustness. 2017 IEEE International Conference on Big Knowledge (ICBK). :320–325.

The network robustness is defined by how well its vertices are connected to each other to keep the network strong and sustainable. The change of network robustness may reveal events as well as periodic trend patterns that affect the interactions among vertices in the network. The evaluation of network robustness may be helpful to many applications, such as event detection, disease transmission, and network security, etc. There are many existing metrics to evaluate the robustness of networks, for example, node connectivity, edge connectivity, algebraic connectivity, graph expansion, R-energy, and so on. It is a natural and urgent problem how to choose a reasonable metric to effectively measure and evaluate the network robustness in the real applications. In this paper, based on some general principles, we design and implement a benchmark, namely BMNR, for the metrics of network robustness. The benchmark consists of graph generator, graph attack and robustness metric evaluation. We find that R-energy can evaluate both connected and disconnected graphs, and can be computed more efficiently.

2018-02-15
Dong, H., Ma, T., He, B., Zheng, J., Liu, G..  2017.  Multiple-fault diagnosis of analog circuit with fault tolerance. 2017 6th Data Driven Control and Learning Systems (DDCLS). :292–296.

A novel method, consisting of fault detection, rough set generation, element isolation and parameter estimation is presented for multiple-fault diagnosis on analog circuit with tolerance. Firstly, a linear-programming concept is developed to transform fault detection of circuit with limited accessible terminals into measurement to check existence of a feasible solution under tolerance constraints. Secondly, fault characteristic equation is deduced to generate a fault rough set. It is proved that the node voltages of nominal circuit can be used in fault characteristic equation with fault tolerance. Lastly, fault detection of circuit with revised deviation restriction for suspected fault elements is proceeded to locate faulty elements and estimate their parameters. The diagnosis accuracy and parameter identification precision of the method are verified by simulation results.

2017-12-28
Zheng, J., Okamura, H., Dohi, T..  2016.  Mean Time to Security Failure of VM-Based Intrusion Tolerant Systems. 2016 IEEE 36th International Conference on Distributed Computing Systems Workshops (ICDCSW). :128–133.

Computer systems face the threat of deliberate security intrusions due to malicious attacks that exploit security holes or vulnerabilities. In practice, these security holes or vulnerabilities still remain in the system and applications even if developers carefully execute system testing. Thus it is necessary and important to develop the mechanism to prevent and/or tolerate security intrusions. As a result, the computer systems are often evaluated with confidentiality, integrity and availability (CIA) criteria from the viewpoint of security, and security is treated as a QoS (Quality of Service) attribute at par with other QoS attributes such as capacity and performance. In this paper, we present the method for quantifying a security attribute called mean time to security failure (MTTSF) of a VM-based intrusion tolerant system based on queueing theory.

Zheng, J., Okamura, H., Dohi, T..  2016.  Performance Evaluation of VM-based Intrusion Tolerant Systems with Poisson Arrivals. 2016 Fourth International Symposium on Computing and Networking (CANDAR). :181–187.

Computer security has become an increasingly important hot topic in computer and communication industry, since it is important to support critical business process and to protect personal and sensitive information. Computer security is to keep security attributes (confidentiality, integrity and availability) of computer systems, which face the threats such as deny-of-service (DoS), virus and intrusion. To ensure high computer security, the intrusion tolerance technique based on fault-tolerant scheme has been widely applied. This paper presents the quantitative performance evaluation of a virtual machine (VM) based intrusion tolerant system. Concretely, two security measures are derived; MTTSF (mean time to security failure) and the effective traffic intensity. The mathematical analysis is achieved by using Laplace-Stieltjes transforms according to the analysis of M/G/1 queueing system.