Biblio

Filters: Author is Al-Shaer, E.  [Clear All Filters]
2019-03-04
Husari, G., Niu, X., Chu, B., Al-Shaer, E..  2018.  Using Entropy and Mutual Information to Extract Threat Actions from Cyber Threat Intelligence. 2018 IEEE International Conference on Intelligence and Security Informatics (ISI). :1–6.
With the rapid growth of the cyber attacks, cyber threat intelligence (CTI) sharing becomes essential for providing advance threat notice and enabling timely response to cyber attacks. Our goal in this paper is to develop an approach to extract low-level cyber threat actions from publicly available CTI sources in an automated manner to enable timely defense decision making. Specifically, we innovatively and successfully used the metrics of entropy and mutual information from Information Theory to analyze the text in the cybersecurity domain. Combined with some basic NLP techniques, our framework, called ActionMiner has achieved higher precision and recall than the state-of-the-art Stanford typed dependency parser, which usually works well in general English but not cybersecurity texts.
2018-01-10
Bhattacharjee, S. Das, Talukder, A., Al-Shaer, E., Doshi, P..  2017.  Prioritized active learning for malicious URL detection using weighted text-based features. 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). :107–112.

Data analytics is being increasingly used in cyber-security problems, and found to be useful in cases where data volumes and heterogeneity make it cumbersome for manual assessment by security experts. In practical cyber-security scenarios involving data-driven analytics, obtaining data with annotations (i.e. ground-truth labels) is a challenging and known limiting factor for many supervised security analytics task. Significant portions of the large datasets typically remain unlabelled, as the task of annotation is extensively manual and requires a huge amount of expert intervention. In this paper, we propose an effective active learning approach that can efficiently address this limitation in a practical cyber-security problem of Phishing categorization, whereby we use a human-machine collaborative approach to design a semi-supervised solution. An initial classifier is learnt on a small amount of the annotated data which in an iterative manner, is then gradually updated by shortlisting only relevant samples from the large pool of unlabelled data that are most likely to influence the classifier performance fast. Prioritized Active Learning shows a significant promise to achieve faster convergence in terms of the classification performance in a batch learning framework, and thus requiring even lesser effort for human annotation. An useful feature weight update technique combined with active learning shows promising classification performance for categorizing Phishing/malicious URLs without requiring a large amount of annotated training samples to be available during training. In experiments with several collections of PhishMonger's Targeted Brand dataset, the proposed method shows significant improvement over the baseline by as much as 12%.