Biblio

Filters: Author is Orrù, Michele  [Clear All Filters]
2019-08-05
Gennaro, Rosario, Minelli, Michele, Nitulescu, Anca, Orrù, Michele.  2018.  Lattice-Based Zk-SNARKs from Square Span Programs. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :556-573.

Zero-knowledge SNARKs (zk-SNARKs) are non-interactive proof systems with short and efficiently verifiable proofs. They elegantly resolve the juxtaposition of individual privacy and public trust, by providing an efficient way of demonstrating knowledge of secret information without actually revealing it. To this day, zk-SNARKs are being used for delegating computation, electronic cryptocurrencies, and anonymous credentials. However, all current SNARKs implementations rely on pre-quantum assumptions and, for this reason, are not expected to withstand cryptanalitic efforts over the next few decades. In this work, we introduce the first designated-verifier zk-SNARK based on lattice assumptions, which are believed to be post-quantum secure. We provide a generalization in the spirit of Gennaro et al. (Eurocrypt'13) to the SNARK of Danezis et al. (Asiacrypt'14) that is based on Square Span Programs (SSPs) and relies on weaker computational assumptions. We focus on designated-verifier proofs and propose a protocol in which a proof consists of just 5 LWE encodings. We provide a concrete choice of parameters as well as extensive benchmarks on a C implementation, showing that our construction is practically instantiable.

2018-01-16
Boyle, Elette, Couteau, Geoffroy, Gilboa, Niv, Ishai, Yuval, Orrù, Michele.  2017.  Homomorphic Secret Sharing: Optimizations and Applications. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :2105–2122.

We continue the study of Homomorphic Secret Sharing (HSS), recently introduced by Boyle et al. (Crypto 2016, Eurocrypt 2017). A (2-party) HSS scheme splits an input x into shares (x0,x1) such that (1) each share computationally hides x, and (2) there exists an efficient homomorphic evaluation algorithm \$\textbackslashEval\$ such that for any function (or "program") from a given class it holds that Eval(x0,P)+Eval(x1,P)=P(x). Boyle et al. show how to construct an HSS scheme for branching programs, with an inverse polynomial error, using discrete-log type assumptions such as DDH. We make two types of contributions. Optimizations. We introduce new optimizations that speed up the previous optimized implementation of Boyle et al. by more than a factor of 30, significantly reduce the share size, and reduce the rate of leakage induced by selective failure. Applications. Our optimizations are motivated by the observation that there are natural application scenarios in which HSS is useful even when applied to simple computations on short inputs. We demonstrate the practical feasibility of our HSS implementation in the context of such applications.