Biblio
With the rise in worth and popularity of cryptocurrencies, a new opportunity for criminal gain is being exploited and with little currently offered in the way of defence. The cost of mining (i.e., earning cryptocurrency through CPU-intensive calculations that underpin the blockchain technology) can be prohibitively expensive, with hardware costs and electrical overheads previously offering a loss compared to the cryptocurrency gained. Off-loading these costs along a distributed network of machines via malware offers an instantly profitable scenario, though standard Anti-virus (AV) products offer some defences against file-based threats. However, newer fileless malicious attacks, occurring through the browser on seemingly legitimate websites, can easily evade detection and surreptitiously engage the victim machine in computationally-expensive cryptomining (cryptojacking). With no current academic literature on the dynamic opcode analysis of cryptomining, to the best of our knowledge, we present the first such experimental study. Indeed, this is the first such work presenting opcode analysis on non-executable files. Our results show that browser-based cryptomining within our dataset can be detected by dynamic opcode analysis, with accuracies of up to 100%. Further to this, our model can distinguish between cryptomining sites, weaponized benign sites, de-weaponized cryptomining sites and real world benign sites. As it is process-based, our technique offers an opportunity to rapidly detect, prevent and mitigate such attacks, a novel contribution which should encourage further future work.
The Internet of Things (IoT) holds great potential for productivity, quality control, supply chain efficiencies and overall business operations. However, with this broader connectivity, new vulnerabilities and attack vectors are being introduced, increasing opportunities for systems to be compromised by hackers and targeted attacks. These vulnerabilities pose severe threats to a myriad of IoT applications within areas such as manufacturing, healthcare, power and energy grids, transportation and commercial building management. While embedded OEMs offer technologies, such as hardware Trusted Platform Module (TPM), that deploy strong chain-of-trust and authentication mechanisms, still they struggle to protect against vulnerabilities introduced by vendors and end users, as well as additional threats posed by potential technical vulnerabilities and zero-day attacks. This paper proposes a pro-active policy-based approach, enforcing the principle of least privilege, through hardware Security Policy Engine (SPE) that actively monitors communication of applications and system resources on the system communication bus (ARM AMBA-AXI4). Upon detecting a policy violation, for example, a malicious application accessing protected storage, it counteracts with predefined mitigations to limit the attack. The proposed SPE approach widely complements existing embedded hardware and software security technologies, targeting the mitigation of risks imposed by unknown vulnerabilities of embedded applications and protocols.
The increased interconnectivity and complexity of supervisory control and data acquisition (SCADA) systems in power system networks has exposed the systems to a multitude of potential vulnerabilities. In this paper, we present a novel approach for a next-generation SCADA-specific intrusion detection system (IDS). The proposed system analyzes multiple attributes in order to provide a comprehensive solution that is able to mitigate varied cyber-attack threats. The multiattribute IDS comprises a heterogeneous white list and behavior-based concept in order to make SCADA cybersystems more secure. This paper also proposes a multilayer cyber-security framework based on IDS for protecting SCADA cybersecurity in smart grids without compromising the availability of normal data. In addition, this paper presents a SCADA-specific cybersecurity testbed to investigate simulated attacks, which has been used in this paper to validate the proposed approach.