Biblio

Filters: Author is Lin, Jingqiang  [Clear All Filters]
2020-01-21
Bao, Xuhua, Zhang, Xiaokun, Lin, Jingqiang, Chu, Dawei, Wang, Qiongxiao, Li, Fengjun.  2019.  Towards the Trust-Enhancements of Single Sign-On Services. 2019 IEEE Conference on Dependable and Secure Computing (DSC). :1–8.

Single sign-on (SSO) becomes popular as the identity management and authentication infrastructure in the Internet. A user receives an SSO ticket after being authenticated by the identity provider (IdP), and this IdP-issued ticket enables him to sign onto the relying party (RP). However, there are vulnerabilities (e.g., Golden SAML) that allow attackers to arbitrarily issue SSO tickets and then sign onto any RP on behalf of any user. Meanwhile, several incidents of certification authorities (CAs) also indicate that the trusted third party of security services is not so trustworthy as expected, and fraudulent TLS server certificates are signed by compromised or deceived CAs to launch TLS man-in-the-middle attacks. Various approaches are then proposed to tame the absolute authority of (compromised) CAs, to detect or prevent fraudulent TLS server certificates in the TLS handshakes. The trust model of SSO services is similar to that of certificate services. So this paper investigates the defense strategies of these trust-enhancements of certificate services, and attempts to apply these strategies to SSO to derive the trust-enhancements applicable in the SSO services. Our analysis derives (a) some security designs which have been commonly-used in the SSO services or non-SSO authentication services, and (b) two schemes effectively improving the trustworthiness of SSO services, which are not widely discussed or adopted.

2020-04-17
Wang, Congli, Lin, Jingqiang, Li, Bingyu, Li, Qi, Wang, Qiongxiao, Zhang, Xiaokun.  2019.  Analyzing the Browser Security Warnings on HTTPS Errors. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1—6.
HTTPS provides authentication, data confidentiality, and integrity for secure web applications in the Internet. In order to establish secure connections with the target website but not a man-in-the-middle or impersonation attacker, a browser shows security warnings to users, when different HTTPS errors happen (e.g., it fails to build a valid certificate chain, or the certificate subject does not match the domain visited). Each browser implements its own design of warnings on HTTPS errors, to balance security and usability. This paper presents a list of common HTTPS errors, and we investigate the browser behaviors on each error. Our study discloses browser defects on handling HTTPS errors in terms of cryptographic algorithm, certificate verification, name validation, HPKP, and HSTS.
2020-01-27
Guan, Le, Cao, Chen, Zhu, Sencun, Lin, Jingqiang, Liu, Peng, Xia, Yubin, Luo, Bo.  2019.  Protecting mobile devices from physical memory attacks with targeted encryption. Proceedings of the 12th Conference on Security and Privacy in Wireless and Mobile Networks. :34–44.
Sensitive data in a process could be scattered over the memory of a computer system for a prolonged period of time. Unfortunately, DRAM chips were proven insecure in previous studies. The problem becomes worse in the mobile environment, in which users' smartphones are easily lost or stolen. The powered-on phones may contain sensitive data in the vulnerable DRAM chips. In this paper, we propose MemVault, a mechanism to protect sensitive data in Android devices against physical memory attacks. MemVault keeps track of the propagation of well-marked sensitive data sources, and selectively encrypts tainted sensitive memory contents in the DRAM chip. When a tainted object is accessed, MemVault redirects the access to the internal RAM (iRAM), where the cipher-text object is decrypted transparently. iRAM is a system-on-chip (SoC) component which is by nature immune to physical memory exploits. We have implemented a MemVault prototype system, and have evaluated it with extensive experiments. Our results validate that MemVault effectively eliminates the occurrences of clear-text sensitive objects in DRAM chips, and imposes acceptable overheads.
2019-12-02
Li, Congwu, Lin, Jingqiang, Cai, Quanwei, Luo, Bo.  2018.  Peapods: OS-Independent Memory Confidentiality for Cryptographic Engines. 2018 IEEE Intl Conf on Parallel Distributed Processing with Applications, Ubiquitous Computing Communications, Big Data Cloud Computing, Social Computing Networking, Sustainable Computing Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom). :862–869.
Cryptography is widely adopted in computer systems to protect the confidentiality of sensitive information. The security relies on the assumption that cryptography keys are never leaked, which may be broken by the memory disclosure attacks, e.g., the Heartbleed and coldboot attacks. Various schemes are proposed to defend against memory disclosure attacks, e.g., performing the cryptographic computations in registers, or adopting the hardware features (e.g., Intel TSX and Intel SGX) to ensure that the plaintext of the cryptography key never appears in memory. However, these schemes are still not widely deployed due to the following limitations: (a) Most of the schemes are deployed in the OS kernel and require the root (or administrator) privileges of the host; and (b) They require the programmers to integrate these protection schemes in the implementation of different cryptography algorithms on different platforms. In this paper, we propose a tool implemented in Clang/LLVM, named Peapods, which provides the user-mode protection for cryptographic keys in software engines. It introduces one qualifier and three intrinsics for the programmers to specify the sensitive variables and code fragments to be protected, making it easier to be deployed. Peapods adopts transactional memory to protect cryptographic keys, while it is OS-independent and does not require the cryptographic computation performed in the OS kernel. Peapods supports the automatic protection between transactions for better performance. We have implemented the prototype of Peapods. Evaluation results demonstrate that Peapods achieves the design goals with a modest overhead (less than 10%).
2018-01-23
Guan, Le, Jia, Shijie, Chen, Bo, Zhang, Fengwei, Luo, Bo, Lin, Jingqiang, Liu, Peng, Xing, Xinyu, Xia, Luning.  2017.  Supporting Transparent Snapshot for Bare-metal Malware Analysis on Mobile Devices. Proceedings of the 33rd Annual Computer Security Applications Conference. :339–349.

The increasing growth of cybercrimes targeting mobile devices urges an efficient malware analysis platform. With the emergence of evasive malware, which is capable of detecting that it is being analyzed in virtualized environments, bare-metal analysis has become the definitive resort. Existing works mainly focus on extracting the malicious behaviors exposed during bare-metal analysis. However, after malware analysis, it is equally important to quickly restore the system to a clean state to examine the next sample. Unfortunately, state-of-the-art solutions on mobile platforms can only restore the disk, and require a time-consuming system reboot. In addition, all of the existing works require some in-guest components to assist the restoration. Therefore, a kernel-level malware is still able to detect the presence of the in-guest components. We propose Bolt, a transparent restoration mechanism for bare-metal analysis on mobile platform without rebooting. Bolt achieves a reboot-less restoration by simultaneously making a snapshot for both the physical memory and the disk. Memory snapshot is enabled by an isolated operating system (BoltOS) in the ARM TrustZone secure world, and disk snapshot is accomplished by a piece of customized firmware (BoltFTL) for flash-based block devices. Because both the BoltOS and the BoltFTL are isolated from the guest system, even kernel-level malware cannot interfere with the restoration. More importantly, Bolt does not require any modifications into the guest system. As such, Bolt is the first that simultaneously achieves efficiency, isolation, and stealthiness to recover from infection due to malware execution. We have implemented a Bolt prototype working with the Android OS. Experimental results show that Bolt can restore the guest system to a clean state in only 2.80 seconds.