Biblio

Filters: Author is Kim, C.  [Clear All Filters]
2019-03-25
Son, W., Jung, B. C., Kim, C., Kim, J. M..  2018.  Pseudo-Random Beamforming with Beam Selection for Improving Physical-Layer Security. 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN). :382–384.
In this paper, we propose a novel pseudo-random beamforming technique with beam selection for improving physical-layer security (PLS) in a downlink cellular network where consists of a base station (BS) with Ntantennas, NMSlegitimate mobile stations (MSs), and NEeavesdroppers. In the proposed technique, the BS generates multiple candidates of beamforming matrix each of which consists of orthogonal beamforming vectors in a pseudo-random manner. Each legitimate MS opportunistically feeds back the received signal-to-interference-and-noise ratio (SINR) value for all beamforming vectors to the BS. The BS transmits data to the legitimate MSs with the optimal beamforming matrix among multiple beam forming matrices that maximizes the secrecy sum-rate. Simulation results show that the proposed technique outperforms the conventional random beamforming technique in terms of the achievable secrecy sum-rate.
2018-05-16
Kim, M., Park, H., Kim, C., Park, S. K., Ri, H. C..  2017.  The Relation Between Local Hysteresis Losses and Remanent Magnetic Fields in HTSC Films. IEEE Transactions on Applied Superconductivity. 27:1–4.

Various critical state models have been developed to understand the hysteresis loss mechanism of high-temperature superconducting (HTSC) films. The analytic relation between the hysteresis loss and the remanent field was obtained based on Bean's critical state model for thin films in the full-penetration case. Furthermore, numerical calculation of local hysteresis loops was carried out by Kim's critical state model. In this paper, we investigated local hysteresis losses for a GdBCO coated conductor by using low-temperature scanning Hall probe microscopy and reproduced the experimental results by applying the critical state model. Because of the demagnetizing effect in thin films, analysis of local hysteresis losses can be useful approach to understand of total hysteresis losses.

2018-02-02
Kim, C..  2016.  Cyber-resilient industrial control system with diversified architecture and bus monitoring. 2016 World Congress on Industrial Control Systems Security (WCICSS). :1–6.

This paper focuses on exploitable cyber vulnerabilities in industrial control systems (ICS) and on a new approach of resiliency against them. Even with numerous metrics and methods for intrusion detection and mitigation strategy, a complete detection and deterrence of cyber-attacks for ICS is impossible. Countering the impact and consequence of possible malfunctions caused by such attacks in the safety-critical ICS's, this paper proposes new controller architecture to fail-operate even under compromised situations. The proposed new ICS is realized with diversification of hardware/software and unidirectional communication in alerting suspicious infiltration to upper-level management. Equipped with control bus monitoring, this operation-basis approach of infiltration detection would become a truly cyber-resilient ICS. The proposed system is tested in a lab hardware experimentation setup and on a cybersecurity test bed, DeterLab, for validation.