Biblio
Zero-day Web attacks are arguably the most serious threats to Web security, but are very challenging to detect because they are not seen or known previously and thus cannot be detected by widely-deployed signature-based Web Application Firewalls (WAFs). This paper proposes ZeroWall, an unsupervised approach, which works with an existing WAF in pipeline, to effectively detecting zero-day Web attacks. Using historical Web requests allowed by an existing signature-based WAF, a vast majority of which are assumed to be benign, ZeroWall trains a self-translation machine using an encoder-decoder recurrent neural network to capture the syntax and semantic patterns of benign requests. In real-time detection, a zero-day attack request (which the WAF fails to detect), not understood well by self-translation machine, cannot be translated back to its original request by the machine, thus is declared as an attack. In our evaluation using 8 real-world traces of 1.4 billion Web requests, ZeroWall successfully detects real zero-day attacks missed by existing WAFs and achieves high F1-scores over 0.98, which significantly outperforms all baseline approaches.
As one of the most commonly used protocols in VPN technology, IPsec has many advantages. However, certain difficulties are posed to the audit work by the protection of in-formation. In this paper, we propose an audit method via man-in-the-middle mechanism, and design a prototype system with DPDK technology. Experiments are implemented in an IPv4 network environment, using default configuration of IPsec VPN configured with known PSK, on operating systems such as windows 7, windows 10, Android and iOS. Experimental results show that the prototype system can obtain the effect of content auditing well without affecting the normal communication between IPsec VPN users.
Information security has become a growing concern. Computer covert channel which is regarded as an important area of information security research gets more attention. In order to detect these covert channels, a variety of detection algorithms are proposed in the course of the research. The algorithms of machine learning type show better results in these detection algorithms. However, the common machine learning algorithms have many problems in the testing process and have great limitations. Based on the deep learning algorithm, this paper proposes a new idea of network covert channel detection and forms a new detection model. On the one hand, this algorithmic model can detect more complex covert channels and, on the other hand, greatly improve the accuracy of detection due to the use of a new deep learning model. By optimizing this test model, we can get better results on the evaluation index.
The collaborative recommendation mechanism is beneficial for the subject in an open network to find efficiently enough referrers who directly interacted with the object and obtain their trust data. The uncertainty analysis to the collected trust data selects the reliable trust data of trustworthy referrers, and then calculates the statistical trust value on certain reliability for any object. After that the subject can judge its trustworthiness and further make a decision about interaction based on the given threshold. The feasibility of this method is verified by three experiments which are designed to validate the model's ability to fight against malicious service, the exaggeration and slander attack. The interactive success rate is significantly improved by using the new model, and the malicious entities are distinguished more effectively than the comparative model.