Biblio

Filters: Author is Tchernykh, A.  [Clear All Filters]
2018-02-06
Tchernykh, A., Babenko, M., Chervyakov, N., Cortés-Mendoza, J. M., Kucherov, N., Miranda-López, V., Deryabin, M., Dvoryaninova, I., Radchenko, G..  2017.  Towards Mitigating Uncertainty of Data Security Breaches and Collusion in Cloud Computing. 2017 28th International Workshop on Database and Expert Systems Applications (DEXA). :137–141.

Cloud computing has become a part of people's lives. However, there are many unresolved problems with security of this technology. According to the assessment of international experts in the field of security, there are risks in the appearance of cloud collusion in uncertain conditions. To mitigate this type of uncertainty, and minimize data redundancy of encryption together with harms caused by cloud collusion, modified threshold Asmuth-Bloom and weighted Mignotte secret sharing schemes are used. We show that if the villains do know the secret parts, and/or do not know the secret key, they cannot recuperate the secret. If the attackers do not know the required number of secret parts but know the secret key, the probability that they obtain the secret depends the size of the machine word in bits that is less than 1/2(1-1). We demonstrate that the proposed scheme ensures security under several types of attacks. We propose four approaches to select weights for secret sharing schemes to optimize the system behavior based on data access speed: pessimistic, balanced, and optimistic, and on speed per price ratio. We use the approximate method to improve the detection, localization and error correction accuracy under cloud parameters uncertainty.