Biblio

Filters: Author is Lee, Gyu Myoung  [Clear All Filters]
2021-07-27
MacDermott, Áine, Carr, John, Shi, Qi, Baharon, Mohd Rizuan, Lee, Gyu Myoung.  2020.  Privacy Preserving Issues in the Dynamic Internet of Things (IoT). 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1–6.
Convergence of critical infrastructure and data, including government and enterprise, to the dynamic Internet of Things (IoT) environment and future digital ecosystems exhibit significant challenges for privacy and identity in these interconnected domains. There are an increasing variety of devices and technologies being introduced, rendering existing security tools inadequate to deal with the dynamic scale and varying actors. The IoT is increasingly data driven with user sovereignty being essential - and actors in varying scenarios including user/customer, device, manufacturer, third party processor, etc. Therefore, flexible frameworks and diverse security requirements for such sensitive environments are needed to secure identities and authenticate IoT devices and their data, protecting privacy and integrity. In this paper we present a review of the principles, techniques and algorithms that can be adapted from other distributed computing paradigms. Said review will be used in application to the development of a collaborative decision-making framework for heterogeneous entities in a distributed domain, whilst simultaneously highlighting privacy preserving issues in the IoT. In addition, we present our trust-based privacy preserving schema using Dempster-Shafer theory of evidence. While still in its infancy, this application could help maintain a level of privacy and nonrepudiation in collaborative environments such as the IoT.
2018-02-14
Jayasinghe, Upul, Lee, Hyun-Woo, Lee, Gyu Myoung.  2017.  A Computational Model to Evaluate Honesty in Social Internet of Things. Proceedings of the Symposium on Applied Computing. :1830–1835.
Trust in Social Internet of Things has allowed to open new horizons in collaborative networking, particularly by allowing objects to communicate with their service providers, based on their relationships analogy to human world. However, strengthening trust is a challenging task as it involves identifying several influential factors in each domain of social-cyber-physical systems in order to build a reliable system. In this paper, we address the issue of understanding and evaluating honesty that is an important trust metric in trustworthiness evaluation process in social networks. First, we identify and define several trust attributes, which affect directly to the honesty. Then, a subjective computational model is derived based on experiences of objects and opinions from friendly objects with respect to identified attributes. Based on the outputs of this model a final honest level is predicted using regression analysis. Finally, the effectiveness of our model is tested using simulations.