Biblio

Filters: Author is Zhang, K.  [Clear All Filters]
2020-12-21
Huang, H., Zhou, S., Lin, J., Zhang, K., Guo, S..  2020.  Bridge the Trustworthiness Gap amongst Multiple Domains: A Practical Blockchain-based Approach. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
In isolated network domains, global trustworthiness (e.g., consistent network view) is critical to the multiple-domain business partners who aim to perform the trusted corporations depending on each isolated network view. However, to achieve such global trustworthiness across distributed network domains is a challenge. This is because when multiple-domain partners are required to exchange their local domain views with each other, it is difficult to ensure the data trustworthiness among them. In addition, the isolated domain view in each partner is prone to be destroyed by malicious falsification attacks. To this end, we propose a blockchain-based approach that can ensure the trustworthiness among multiple-party domains. In this paper, we mainly present the design and implementation of the proposed trustworthiness-protection system. A cloud-based prototype and a local testbed are developed based on Ethereum. Finally, experimental results demonstrate the effectiveness of the proposed prototype and testbed.
2018-05-02
Yao, Y., Xiao, B., Wu, G., Liu, X., Yu, Z., Zhang, K., Zhou, X..  2017.  Voiceprint: A Novel Sybil Attack Detection Method Based on RSSI for VANETs. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :591–602.

Vehicular Ad Hoc Networks (VANETs) enable vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications that bring many benefits and conveniences to improve the road safety and drive comfort in future transportation systems. Sybil attack is considered one of the most risky threats in VANETs since a Sybil attacker can generate multiple fake identities with false messages to severely impair the normal functions of safety-related applications. In this paper, we propose a novel Sybil attack detection method based on Received Signal Strength Indicator (RSSI), Voiceprint, to conduct a widely applicable, lightweight and full-distributed detection for VANETs. To avoid the inaccurate position estimation according to predefined radio propagation models in previous RSSI-based detection methods, Voiceprint adopts the RSSI time series as the vehicular speech and compares the similarity among all received time series. Voiceprint does not rely on any predefined radio propagation model, and conducts independent detection without the support of the centralized infrastructure. It has more accurate detection rate in different dynamic environments. Extensive simulations and real-world experiments demonstrate that the proposed Voiceprint is an effective method considering the cost, complexity and performance.

2018-02-15
Ni, J., Cheng, W., Zhang, K., Song, D., Yan, T., Chen, H., Zhang, X..  2017.  Ranking Causal Anomalies by Modeling Local Propagations on Networked Systems. 2017 IEEE International Conference on Data Mining (ICDM). :1003–1008.

Complex systems are prevalent in many fields such as finance, security and industry. A fundamental problem in system management is to perform diagnosis in case of system failure such that the causal anomalies, i.e., root causes, can be identified for system debugging and repair. Recently, invariant network has proven a powerful tool in characterizing complex system behaviors. In an invariant network, a node represents a system component, and an edge indicates a stable interaction between two components. Recent approaches have shown that by modeling fault propagation in the invariant network, causal anomalies can be effectively discovered. Despite their success, the existing methods have a major limitation: they typically assume there is only a single and global fault propagation in the entire network. However, in real-world large-scale complex systems, it's more common for multiple fault propagations to grow simultaneously and locally within different node clusters and jointly define the system failure status. Inspired by this key observation, we propose a two-phase framework to identify and rank causal anomalies. In the first phase, a probabilistic clustering is performed to uncover impaired node clusters in the invariant network. Then, in the second phase, a low-rank network diffusion model is designed to backtrack causal anomalies in different impaired clusters. Extensive experimental results on real-life datasets demonstrate the effectiveness of our method.