Biblio

Filters: Author is Timmermann, D.  [Clear All Filters]
2018-02-27
Schulz, T., Golatowski, F., Timmermann, D..  2017.  Evaluation of a Formalized Encryption Library for Safety-Critical Embedded Systems. 2017 IEEE International Conference on Industrial Technology (ICIT). :1153–1158.

Complex safety-critical devices require dependable communication. Dependability includes confidentiality and integrity as much as safety. Encrypting gateways with demilitarized zones, Multiple Independent Levels of Security architectures and the infamous Air Gap are diverse integration patterns for safety-critical infrastructure. Though resource restricted embedded safety devices still lack simple, certifiable, and efficient cryptography implementations. Following the recommended formal methods approach for safety-critical devices, we have implemented proven cryptography algorithms in the qualified model based language Scade as the Safety Leveraged Implementation of Data Encryption (SLIDE) library. Optimization for the synchronous dataflow language is discussed in the paper. The implementation for public-key based encryption and authentication is evaluated for real-world performance. The feasibility is shown by execution time benchmarks on an industrial safety microcontroller platform running a train control safety application.