Biblio

Filters: Author is Kotsopoulos, S.  [Clear All Filters]
2021-02-23
Adat, V., Parsamehr, R., Politis, I., Tselios, C., Kotsopoulos, S..  2020.  Malicious user identification scheme for network coding enabled small cell environment. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—6.
Reliable communication over the wireless network with high throughput is a major target for the next generation communication technologies. Network coding can significantly improve the throughput efficiency of the network in a cooperative environment. The small cell technology and device to device communication make network coding an ideal candidate for improved performance in the fifth generation of communication networks. However, the security concerns associated with network coding needs to be addressed before any practical implementations. Pollution attacks are considered one of the most threatening attacks in the network coding environment. Although there are different integrity schemes to detect polluted packets, identifying the exact adversary in a network coding environment is a less addressed challenge. This paper proposes a scheme for identifying and locating adversaries in a dense, network coding enabled environment of mobile nodes. It also discusses a non-repudiation protocol that will prevent adversaries from deceiving the network.
2018-03-05
Tselios, C., Politis, I., Kotsopoulos, S..  2017.  Enhancing SDN Security for IoT-Related Deployments through Blockchain. 2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :303–308.

The majority of business activity of our integrated and connected world takes place in networks based on cloud computing infrastructure that cross national, geographic and jurisdictional boundaries. Such an efficient entity interconnection is made possible through an emerging networking paradigm, Software Defined Networking (SDN) that intends to vastly simplify policy enforcement and network reconfiguration in a dynamic manner. However, despite the obvious advantages this novel networking paradigm introduces, its increased attack surface compared to traditional networking deployments proved to be a thorny issue that creates skepticism when safety-critical applications are considered. Especially when SDN is used to support Internet-of-Things (IoT)-related networking elements, additional security concerns rise, due to the elevated vulnerability of such deployments to specific types of attacks and the necessity of inter-cloud communication any IoT application would require. The overall number of connected nodes makes the efficient monitoring of all entities a real challenge, that must be tackled to prevent system degradation and service outage. This position paper provides an overview of common security issues of SDN when linked to IoT clouds, describes the design principals of the recently introduced Blockchain paradigm and advocates the reasons that render Blockchain as a significant security factor for solutions where SDN and IoT are involved.

Tselios, C., Politis, I., Kotsopoulos, S..  2017.  Enhancing SDN Security for IoT-Related Deployments through Blockchain. 2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :303–308.

The majority of business activity of our integrated and connected world takes place in networks based on cloud computing infrastructure that cross national, geographic and jurisdictional boundaries. Such an efficient entity interconnection is made possible through an emerging networking paradigm, Software Defined Networking (SDN) that intends to vastly simplify policy enforcement and network reconfiguration in a dynamic manner. However, despite the obvious advantages this novel networking paradigm introduces, its increased attack surface compared to traditional networking deployments proved to be a thorny issue that creates skepticism when safety-critical applications are considered. Especially when SDN is used to support Internet-of-Things (IoT)-related networking elements, additional security concerns rise, due to the elevated vulnerability of such deployments to specific types of attacks and the necessity of inter-cloud communication any IoT application would require. The overall number of connected nodes makes the efficient monitoring of all entities a real challenge, that must be tackled to prevent system degradation and service outage. This position paper provides an overview of common security issues of SDN when linked to IoT clouds, describes the design principals of the recently introduced Blockchain paradigm and advocates the reasons that render Blockchain as a significant security factor for solutions where SDN and IoT are involved.

2021-04-08
Chrysikos, T., Dagiuklas, T., Kotsopoulos, S..  2010.  Wireless Information-Theoretic Security for moving users in autonomic networks. 2010 IFIP Wireless Days. :1–5.
This paper studies Wireless Information-Theoretic Security for low-speed mobility in autonomic networks. More specifically, the impact of user movement on the Probability of Non-Zero Secrecy Capacity and Outage Secrecy Capacity for different channel conditions has been investigated. This is accomplished by establishing a link between different user locations and the boundaries of information-theoretic secure communication. Human mobility scenarios are considered, and its impact on physical layer security is examined, considering quasi-static Rayleigh channels for the fading phenomena. Simulation results have shown that the Secrecy Capacity depends on the relative distance of legitimate and illegitimate (eavesdropper) users in reference to the given transmitter.