Biblio

Filters: Author is Amann, Johanna  [Clear All Filters]
2019-11-26
Scheitle, Quirin, Gasser, Oliver, Nolte, Theodor, Amann, Johanna, Brent, Lexi, Carle, Georg, Holz, Ralph, Schmidt, Thomas C., Wählisch, Matthias.  2018.  The Rise of Certificate Transparency and Its Implications on the Internet Ecosystem. Proceedings of the Internet Measurement Conference 2018. :343-349.

In this paper, we analyze the evolution of Certificate Transparency (CT) over time and explore the implications of exposing certificate DNS names from the perspective of security and privacy. We find that certificates in CT logs have seen exponential growth. Website support for CT has also constantly increased, with now 33% of established connections supporting CT. With the increasing deployment of CT, there are also concerns of information leakage due to all certificates being visible in CT logs. To understand this threat, we introduce a CT honeypot and show that data from CT logs is being used to identify targets for scanning campaigns only minutes after certificate issuance. We present and evaluate a methodology to learn and validate new subdomains from the vast number of domains extracted from CT logged certificates.

2019-01-31
Razaghpanah, Abbas, Niaki, Arian Akhavan, Vallina-Rodriguez, Narseo, Sundaresan, Srikanth, Amann, Johanna, Gill, Philippa.  2018.  Studying TLS Usage in Android Apps. Proceedings of the Applied Networking Research Workshop. :5–5.

First standardized by the IETF in the 1990's, SSL/TLS is the most widely-used encryption protocol on the Internet. This makes it imperative to study its usage across different platforms and applications to ensure proper usage and robustness against attacks and vulnerabilities. While previous efforts have focused on the usage of TLS in the desktop ecosystem, there have been no studies of TLS usage by mobile apps at scale. In our study, we use anonymized data collected by the Lumen mobile measurement app to analyze TLS usage by Android apps in the wild. We analyze and fingerprint handshake messages to characterize the TLS APIs and libraries that apps use, and evaluate their weaknesses. We find that 84% of apps use the default TLS libraries provided by the operating system, and the remaining apps use other TLS libraries for various reasons such as using TLS extensions and features that are not supported by the Android TLS libraries, some of which are also not standardized by the IETF. Our analysis reveals the strengths and weaknesses of each approach, demonstrating that the path to improving TLS security in the mobile platform is not straightforward. Based on work published at: Abbas Razaghpanah, Arian Akhavan Niaki, Narseo Vallina-Rodriguez, Srikanth Sundaresan, Johanna Amann, and Phillipa Gill. 2017. Studying TLS Usage in Android Apps. In Proceedings of CoNEXT '17. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3143361.3143400

2018-03-19
Amann, Johanna, Gasser, Oliver, Scheitle, Quirin, Brent, Lexi, Carle, Georg, Holz, Ralph.  2017.  Mission Accomplished?: HTTPS Security After Diginotar Proceedings of the 2017 Internet Measurement Conference. :325–340.

Driven by CA compromises and the risk of man-in-the-middle attacks, new security features have been added to TLS, HTTPS, and the web PKI over the past five years. These include Certificate Transparency (CT), for making the CA system auditable; HSTS and HPKP headers, to harden the HTTPS posture of a domain; the DNS-based extensions CAA and TLSA, for control over certificate issuance and pinning; and SCSV, for protocol downgrade protection. This paper presents the first large scale investigation of these improvements to the HTTPS ecosystem, explicitly accounting for their combined usage. In addition to collecting passive measurements at the Internet uplinks of large University networks on three continents, we perform the largest domain-based active Internet scan to date, covering 193M domains. Furthermore, we track the long-term deployment history of new TLS security features by leveraging passive observations dating back to 2012. We find that while deployment of new security features has picked up in general, only SCSV (49M domains) and CT (7M domains) have gained enough momentum to improve the overall security of HTTPS. Features with higher complexity, such as HPKP, are deployed scarcely and often incorrectly. Our empirical findings are placed in the context of risk, deployment effort, and benefit of these new technologies, and actionable steps for improvement are proposed. We cross-correlate use of features and find some techniques with significant correlation in deployment. We support reproducible research and publicly release data and code.

2018-05-30
Razaghpanah, Abbas, Niaki, Arian Akhavan, Vallina-Rodriguez, Narseo, Sundaresan, Srikanth, Amann, Johanna, Gill, Phillipa.  2017.  Studying TLS Usage in Android Apps. Proceedings of the 13th International Conference on Emerging Networking EXperiments and Technologies. :350–362.

Transport Layer Security (TLS), has become the de-facto standard for secure Internet communication. When used correctly, it provides secure data transfer, but used incorrectly, it can leave users vulnerable to attacks while giving them a false sense of security. Numerous efforts have studied the adoption of TLS (and its predecessor, SSL) and its use in the desktop ecosystem, attacks, and vulnerabilities in both desktop clients and servers. However, there is a dearth of knowledge of how TLS is used in mobile platforms. In this paper we use data collected by Lumen, a mobile measurement platform, to analyze how 7,258 Android apps use TLS in the wild. We analyze and fingerprint handshake messages to characterize the TLS APIs and libraries that apps use, and also evaluate weaknesses. We see that about 84% of apps use default OS APIs for TLS. Many apps use third-party TLS libraries; in some cases they are forced to do so because of restricted Android capabilities. Our analysis shows that both approaches have limitations, and that improving TLS security in mobile is not straightforward. Apps that use their own TLS configurations may have vulnerabilities due to developer inexperience, but apps that use OS defaults are vulnerable to certain attacks if the OS is out of date, even if the apps themselves are up to date. We also study certificate verification, and see low prevalence of security measures such as certificate pinning, even among high-risk apps such as those providing financial services, though we did observe major third-party tracking and advertisement services deploying certificate pinning.