Biblio

Filters: Author is Hu, Zhisheng  [Clear All Filters]
2021-10-12
Zhong, Zhenyu, Hu, Zhisheng, Chen, Xiaowei.  2020.  Quantifying DNN Model Robustness to the Real-World Threats. 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :150–157.
DNN models have suffered from adversarial example attacks, which lead to inconsistent prediction results. As opposed to the gradient-based attack, which assumes white-box access to the model by the attacker, we focus on more realistic input perturbations from the real-world and their actual impact on the model robustness without any presence of the attackers. In this work, we promote a standardized framework to quantify the robustness against real-world threats. It is composed of a set of safety properties associated with common violations, a group of metrics to measure the minimal perturbation that causes the offense, and various criteria that reflect different aspects of the model robustness. By revealing comparison results through this framework among 13 pre-trained ImageNet classifiers, three state-of-the-art object detectors, and three cloud-based content moderators, we deliver the status quo of the real-world model robustness. Beyond that, we provide robustness benchmarking datasets for the community.
2018-03-26
Hu, Zhisheng, Zhu, Minghui, Liu, Peng.  2017.  Online Algorithms for Adaptive Cyber Defense on Bayesian Attack Graphs. Proceedings of the 2017 Workshop on Moving Target Defense. :99–109.

Emerging zero-day vulnerabilities in information and communications technology systems make cyber defenses very challenging. In particular, the defender faces uncertainties of; e.g., system states and the locations and the impacts of vulnerabilities. In this paper, we study the defense problem on a computer network that is modeled as a partially observable Markov decision process on a Bayesian attack graph. We propose online algorithms which allow the defender to identify effective defense policies when utility functions are unknown a priori. The algorithm performance is verified via numerical simulations based on real-world attacks.