Biblio

Filters: Author is You, Wei  [Clear All Filters]
2021-09-30
Zhang, Qingqing, Tang, Hongbo, You, Wei, Li, Yingle.  2020.  A Method for Constructing Heterogeneous Entities Pool in NFV Security Architecture Based on Mimic Defense. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :1029–1033.
The characteristics of resource sharing and centralized deployment of network function virtualization (NFV) make the physical boundary under the traditional closed management mode disappear, bringing many new security threats to the network. To improve the security of the NFV network, this paper proposes a network function virtualization security architecture based on mimic defense. At the same time, to ensure the differences between heterogeneous entities, a genetic algorithm-based heterogeneous entities pool construction method is proposed. Simulation results show that this method can effectively guarantee the difference between heterogeneous entities and increase the difficulty of attackers.
2018-05-30
Chen, Yi, You, Wei, Lee, Yeonjoon, Chen, Kai, Wang, XiaoFeng, Zou, Wei.  2017.  Mass Discovery of Android Traffic Imprints Through Instantiated Partial Execution. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :815–828.
Monitoring network behaviors of mobile applications, controlling their resource access and detecting potentially harmful apps are becoming increasingly important for the security protection within today's organizational, ISP and carriers. For this purpose, apps need to be identified from their communication, based upon their individual traffic signatures (called imprints in our research). Creating imprints for a large number of apps is nontrivial, due to the challenges in comprehensively analyzing their network activities at a large scale, for millions of apps on today's rapidly-growing app marketplaces. Prior research relies on automatic exploration of an app's user interfaces (UIs) to trigger its network activities, which is less likely to scale given the cost of the operation (at least 5 minutes per app) and its effectiveness (limited coverage of an app's behaviors). In this paper, we present Tiger (Traffic Imprint Generator), a novel technique that makes comprehensive app imprint generation possible in a massive scale. At the center of Tiger is a unique instantiated slicing technique, which aggressively prunes the program slice extracted from the app's network-related code by evaluating each variable's impact on possible network invariants, and removing those unlikely to contribute through assigning them concrete values. In this way, Tiger avoids exploring a large number of program paths unrelated to the app's identifiable traffic, thereby reducing the cost of the code analysis by more than one order of magnitude, in comparison with the conventional slicing and execution approach. Our experiments show that Tiger is capable of recovering an app's full network activities within 18 seconds, achieving over 98% coverage of its identifiable packets and 0.742% false detection rate on app identification. Further running the technique on over 200,000 real-world Android apps (including 78.23% potentially harmful apps) leads to the discovery of surprising new types of traffic invariants, including fake device information, hardcoded time values, session IDs and credentials, as well as complicated trigger conditions for an app's network activities, such as human involvement, Intent trigger and server-side instructions. Our findings demonstrate that many network activities cannot easily be invoked through automatic UI exploration and code-analysis based approaches present a promising alternative.
2018-03-26
You, Wei, Zong, Peiyuan, Chen, Kai, Wang, XiaoFeng, Liao, Xiaojing, Bian, Pan, Liang, Bin.  2017.  SemFuzz: Semantics-Based Automatic Generation of Proof-of-Concept Exploits. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :2139–2154.

Patches and related information about software vulnerabilities are often made available to the public, aiming to facilitate timely fixes. Unfortunately, the slow paces of system updates (30 days on average) often present to the attackers enough time to recover hidden bugs for attacking the unpatched systems. Making things worse is the potential to automatically generate exploits on input-validation flaws through reverse-engineering patches, even though such vulnerabilities are relatively rare (e.g., 5% among all Linux kernel vulnerabilities in last few years). Less understood, however, are the implications of other bug-related information (e.g., bug descriptions in CVE), particularly whether utilization of such information can facilitate exploit generation, even on other vulnerability types that have never been automatically attacked. In this paper, we seek to use such information to generate proof-of-concept (PoC) exploits for the vulnerability types never automatically attacked. Unlike an input validation flaw that is often patched by adding missing sanitization checks, fixing other vulnerability types is more complicated, usually involving replacement of the whole chunk of code. Without understanding of the code changed, automatic exploit becomes less likely. To address this challenge, we present SemFuzz, a novel technique leveraging vulnerability-related text (e.g., CVE reports and Linux git logs) to guide automatic generation of PoC exploits. Such an end-to-end approach is made possible by natural-language processing (NLP) based information extraction and a semantics-based fuzzing process guided by such information. Running over 112 Linux kernel flaws reported in the past five years, SemFuzz successfully triggered 18 of them, and further discovered one zero-day and one undisclosed vulnerabilities. These flaws include use-after-free, memory corruption, information leak, etc., indicating that more complicated flaws can also be automatically attacked. This finding calls into question the way vulnerability-related information is shared today.