Biblio
Smartphones have become ubiquitous in our everyday lives, providing diverse functionalities via millions of applications (apps) that are readily available. To achieve these functionalities, apps need to access and utilize potentially sensitive data, stored in the user's device. This can pose a serious threat to users' security and privacy, when considering malicious or underskilled developers. While application marketplaces, like Google Play store and Apple App store, provide factors like ratings, user reviews, and number of downloads to distinguish benign from risky apps, studies have shown that these metrics are not adequately effective. The security and privacy health of an application should also be considered to generate a more reliable and transparent trustworthiness score. In order to automate the trustworthiness assessment of mobile applications, we introduce the Trust4App framework, which not only considers the publicly available factors mentioned above, but also takes into account the Security and Privacy (S&P) health of an application. Additionally, it considers the S&P posture of a user, and provides an holistic personalized trustworthiness score. While existing automatic trustworthiness frameworks only consider trustworthiness indicators (e.g. permission usage, privacy leaks) individually, Trust4App is, to the best of our knowledge, the first framework to combine these indicators. We also implement a proof-of-concept realization of our framework and demonstrate that Trust4App provides a more comprehensive, intuitive and actionable trustworthiness assessment compared to existing approaches.
Deception has been widely considered in literature as an effective means of enhancing security protection when the defender holds some private information about the ongoing rivalry unknown to the attacker. However, most of the existing works on deception assume static environments and thus consider only myopic deception, while practical security games between the defender and the attacker may happen in dynamic scenarios. To better exploit the defender's private information in dynamic environments and improve security performance, a stochastic deception game (SDG) framework is developed in this work to enable the defender to conduct foresighted deception. To solve the proposed SDG, a new iterative algorithm that is provably convergent is developed. A corresponding learning algorithm is developed as well to facilitate the defender in conducting foresighted deception in unknown dynamic environments. Numerical results show that the proposed foresighted deception can offer a substantial performance improvement as compared to the conventional myopic deception.