Biblio

Filters: Author is Cai, H.  [Clear All Filters]
2019-02-14
Jenkins, J., Cai, H..  2018.  Leveraging Historical Versions of Android Apps for Efficient and Precise Taint Analysis. 2018 IEEE/ACM 15th International Conference on Mining Software Repositories (MSR). :265-269.

Today, computing on various Android devices is pervasive. However, growing security vulnerabilities and attacks in the Android ecosystem constitute various threats through user apps. Taint analysis is a common technique for defending against these threats, yet it suffers from challenges in attaining practical simultaneous scalability and effectiveness. This paper presents a novel approach to fast and precise taint checking, called incremental taint analysis, by exploiting the evolving nature of Android apps. The analysis narrows down the search space of taint checking from an entire app, as conventionally addressed, to the parts of the program that are different from its previous versions. This technique improves the overall efficiency of checking multiple versions of the app as it evolves. We have implemented the techniques as a tool prototype, EVOTAINT, and evaluated our analysis by applying it to real-world evolving Android apps. Our preliminary results show that the incremental approach largely reduced the cost of taint analysis, by 78.6% on average, yet without sacrificing the analysis effectiveness, relative to a representative precise taint analysis as the baseline.

2018-04-02
Cai, H., Yun, T., Hester, J., Venkatasubramanian, K. K..  2017.  Deploying Data-Driven Security Solutions on Resource-Constrained Wearable IoT Systems. 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW). :199–204.

Wearable Internet-of-Things (WIoT) environments have demonstrated great potential in a broad range of applications in healthcare and well-being. Security is essential for WIoT environments. Lack of security in WIoTs not only harms user privacy, but may also harm the user's safety. Though devices in the WIoT can be attacked in many ways, in this paper we focus on adversaries who mount what we call sensor-hijacking attacks, which prevent the constituent medical devices from accurately collecting and reporting the user's health state (e.g., reporting old or wrong physiological measurements). In this paper we outline some of our experiences in implementing a data-driven security solution for detecting sensor-hijacking attack on a secure wearable internet-of-things (WIoT) base station called the Amulet. Given the limited capabilities (computation, memory, battery power) of the Amulet platform, implementing such a security solution is quite challenging and presents several trade-offs with respect to detection accuracy and resources requirements. We conclude the paper with a list of insights into what capabilities constrained WIoT platforms should provide developers so as to make the inclusion of data-driven security primitives in such systems.

2018-06-11
Cai, Y., Huang, H., Cai, H., Qi, Y..  2017.  A K-nearest neighbor locally search regression algorithm for short-term traffic flow forecasting. 2017 9th International Conference on Modelling, Identification and Control (ICMIC). :624–629.

Accurate short-term traffic flow forecasting is of great significance for real-time traffic control, guidance and management. The k-nearest neighbor (k-NN) model is a classic data-driven method which is relatively effective yet simple to implement for short-term traffic flow forecasting. For conventional prediction mechanism of k-NN model, the k nearest neighbors' outputs weighted by similarities between the current traffic flow vector and historical traffic flow vectors is directly used to generate prediction values, so that the prediction results are always not ideal. It is observed that there are always some outliers in k nearest neighbors' outputs, which may have a bad influences on the prediction value, and the local similarities between current traffic flow and historical traffic flows at the current sampling period should have a greater relevant to the prediction value. In this paper, we focus on improving the prediction mechanism of k-NN model and proposed a k-nearest neighbor locally search regression algorithm (k-LSR). The k-LSR algorithm can use locally search strategy to search for optimal nearest neighbors' outputs and use optimal nearest neighbors' outputs weighted by local similarities to forecast short-term traffic flow so as to improve the prediction mechanism of k-NN model. The proposed algorithm is tested on the actual data and compared with other algorithms in performance. We use the root mean squared error (RMSE) as the evaluation indicator. The comparison results show that the k-LSR algorithm is more successful than the k-NN and k-nearest neighbor locally weighted regression algorithm (k-LWR) in forecasting short-term traffic flow, and which prove the superiority and good practicability of the proposed algorithm.