Biblio

Filters: Author is Hewett, Rattikorn  [Clear All Filters]
2023-05-12
Arca, Sevgi, Hewett, Rattikorn.  2022.  Anonymity-driven Measures for Privacy. 2022 6th International Conference on Cryptography, Security and Privacy (CSP). :6–10.
In today’s world, digital data are enormous due to technologies that advance data collection, storage, and analyses. As more data are shared or publicly available, privacy is of great concern. Having privacy means having control over your data. The first step towards privacy protection is to understand various aspects of privacy and have the ability to quantify them. Much work in structured data, however, has focused on approaches to transforming the original data into a more anonymous form (via generalization and suppression) while preserving the data integrity. Such anonymization techniques count data instances of each set of distinct attribute values of interest to signify the required anonymity to protect an individual’s identity or confidential data. While this serves the purpose, our research takes an alternative approach to provide quick privacy measures by way of anonymity especially when dealing with large-scale data. This paper presents a study of anonymity measures based on their relevant properties that impact privacy. Specifically, we identify three properties: uniformity, variety, and diversity, and formulate their measures. The paper provides illustrated examples to evaluate their validity and discusses the use of multi-aspects of anonymity and privacy measures.
2020-03-18
Van, Hao, Nguyen, Huyen N., Hewett, Rattikorn, Dang, Tommy.  2019.  HackerNets: Visualizing Media Conversations on Internet of Things, Big Data, and Cybersecurity. 2019 IEEE International Conference on Big Data (Big Data). :3293–3302.
The giant network of Internet of Things establishes connections between smart devices and people, with protocols to collect and share data. While the data is expanding at a fast pace in this era of Big Data, there are growing concerns about security and privacy policies. In the current Internet of Things ecosystems, at the intersection of the Internet of Things, Big Data, and Cybersecurity lies the subject that attracts the most attention. In aiding users in getting an adequate understanding, this paper introduces HackerNets, an interactive visualization for emerging topics in the crossing of IoT, Big Data, and Cybersecurity over time. To demonstrate the effectiveness and usefulness of HackerNets, we apply and evaluate the technique on the dataset from the social media platform.
2018-05-09
Aseeri, Ahmad, Netjinda, Nuttapong, Hewett, Rattikorn.  2017.  Alleviating Eavesdropping Attacks in Software-defined Networking Data Plane. Proceedings of the 12th Annual Conference on Cyber and Information Security Research. :1:1–1:8.
Software-Defined Networking (SDN) is an emerging paradigm that introduces a concept of programmable networks to enhance the agility in networking management. By separating concerns of the data plane and the control plane, implementing network switching as packet forwarding, and using centralized software to logically control the entire networks, SDN makes it simpler to automate and configure the network to respond to high-level policy enforcement and dynamically changing network conditions. As SDN becomes more prevalent, its security issues are increasingly critical. Eaves-dropping attacks are one of the most common and important network attacks because they are relatively easy to implement and their effects can escalate to more severe attacks. This paper addresses the issue of how to cope with eavesdropping attacks in the SDN data plane by using multiple routing paths to reduce the severity of data leakage. While this existing approach appears to be considerably effective, our simple analysis uncovers that without a proper strategy of data communication, it can still lead to 100% of data exposure. The paper describes a remedy along with illustrations both analytically and experimentally. The results show that our proposed remedy can avoid such catastrophe and further reduces the percentage of risk from data exposure approximately by a factor of 1/n where n is the number of alternate disjoint paths.