Biblio

Filters: Author is Calyam, Prasad  [Clear All Filters]
2022-07-12
Vekaria, Komal Bhupendra, Calyam, Prasad, Wang, Songjie, Payyavula, Ramya, Rockey, Matthew, Ahmed, Nafis.  2021.  Cyber Range for Research-Inspired Learning of “Attack Defense by Pretense” Principle and Practice. IEEE Transactions on Learning Technologies. 14:322—337.
There is an increasing trend in cloud adoption of enterprise applications in, for example, manufacturing, healthcare, and finance. Such applications are routinely subject to targeted cyberattacks, which result in significant loss of sensitive data (e.g., due to data exfiltration in advanced persistent threats) or valuable utilities (e.g., due to resource the exfiltration of power in cryptojacking). There is a critical need to train highly skilled cybersecurity professionals, who are capable of defending against such targeted attacks. In this article, we present the design, development, and evaluation of the Mizzou Cyber Range, an online platform to learn basic/advanced cyber defense concepts and perform training exercises to engender the next-generation cybersecurity workforce. Mizzou Cyber Range features flexibility, scalability, portability, and extendability in delivering cyberattack/defense learning modules to students. We detail our “research-inspired learning” and “learn-apply-create” three-phase pedagogy methodologies in the development of four learning modules that include laboratory exercises and self-study activities using realistic cloud-based application testbeds. The learning modules allow students to gain skills in using latest technologies (e.g., elastic capacity provisioning, software-defined everything infrastructure) to implement sophisticated “attack defense by pretense” techniques. Students can also use the learning modules to understand the attacker-defender game in order to create disincentives (i.e., pretense initiation) that make the attacker's tasks more difficult, costly, time consuming, and uncertain. Lastly, we show the benefits of our Mizzou Cyber Range through the evaluation of student learning using auto-grading, rank assessments with peer standing, and monitoring of students' performance via feedback from prelab evaluation surveys and postlab technical assessments.
2022-11-08
Mode, Gautam Raj, Calyam, Prasad, Hoque, Khaza Anuarul.  2020.  Impact of False Data Injection Attacks on Deep Learning Enabled Predictive Analytics. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1–7.
Industry 4.0 is the latest industrial revolution primarily merging automation with advanced manufacturing to reduce direct human effort and resources. Predictive maintenance (PdM) is an industry 4.0 solution, which facilitates predicting faults in a component or a system powered by state-of-the- art machine learning (ML) algorithms (especially deep learning algorithms) and the Internet-of-Things (IoT) sensors. However, IoT sensors and deep learning (DL) algorithms, both are known for their vulnerabilities to cyber-attacks. In the context of PdM systems, such attacks can have catastrophic consequences as they are hard to detect due to the nature of the attack. To date, the majority of the published literature focuses on the accuracy of DL enabled PdM systems and often ignores the effect of such attacks. In this paper, we demonstrate the effect of IoT sensor attacks (in the form of false data injection attack) on a PdM system. At first, we use three state-of-the-art DL algorithms, specifically, Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Convolutional Neural Network (CNN) for predicting the Remaining Useful Life (RUL) of a turbofan engine using NASA's C-MAPSS dataset. The obtained results show that the GRU-based PdM model outperforms some of the recent literature on RUL prediction using the C-MAPSS dataset. Afterward, we model and apply two different types of false data injection attacks (FDIA), specifically, continuous and interim FDIAs on turbofan engine sensor data and evaluate their impact on CNN, LSTM, and GRU-based PdM systems. The obtained results demonstrate that FDI attacks on even a few IoT sensors can strongly defect the RUL prediction in all cases. However, the GRU-based PdM model performs better in terms of accuracy and resiliency to FDIA. Lastly, we perform a study on the GRU-based PdM model using four different GRU networks with different sequence lengths. Our experiments reveal an interesting relationship between the accuracy, resiliency and sequence length for the GRU-based PdM models.
2020-06-04
Gulhane, Aniket, Vyas, Akhil, Mitra, Reshmi, Oruche, Roland, Hoefer, Gabriela, Valluripally, Samaikya, Calyam, Prasad, Hoque, Khaza Anuarul.  2019.  Security, Privacy and Safety Risk Assessment for Virtual Reality Learning Environment Applications. 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). :1—9.

Social Virtual Reality based Learning Environments (VRLEs) such as vSocial render instructional content in a three-dimensional immersive computer experience for training youth with learning impediments. There are limited prior works that explored attack vulnerability in VR technology, and hence there is a need for systematic frameworks to quantify risks corresponding to security, privacy, and safety (SPS) threats. The SPS threats can adversely impact the educational user experience and hinder delivery of VRLE content. In this paper, we propose a novel risk assessment framework that utilizes attack trees to calculate a risk score for varied VRLE threats with rate and duration of threats as inputs. We compare the impact of a well-constructed attack tree with an adhoc attack tree to study the trade-offs between overheads in managing attack trees, and the cost of risk mitigation when vulnerabilities are identified. We use a vSocial VRLE testbed in a case study to showcase the effectiveness of our framework and demonstrate how a suitable attack tree formalism can result in a more safer, privacy-preserving and secure VRLE system.

2019-12-18
Neupane, Roshan Lal, Neely, Travis, Chettri, Nishant, Vassell, Mark, Zhang, Yuanxun, Calyam, Prasad, Durairajan, Ramakrishnan.  2018.  Dolus: Cyber Defense Using Pretense Against DDoS Attacks in Cloud Platforms. Proceedings of the 19th International Conference on Distributed Computing and Networking. :30:1–30:10.
Cloud-hosted services are being increasingly used in online businesses in e.g., retail, healthcare, manufacturing, entertainment due to benefits such as scalability and reliability. These benefits are fueled by innovations in orchestration of cloud platforms that make them totally programmable as Software Defined everything Infrastructures (SDxI). At the same time, sophisticated targeted attacks such as Distributed Denial-of-Service (DDoS) are growing on an unprecedented scale threatening the availability of online businesses. In this paper, we present a novel defense system called Dolus to mitigate the impact of DDoS attacks launched against high-value services hosted in SDxI-based cloud platforms. Our Dolus system is able to initiate a 'pretense' in a scalable and collaborative manner to deter the attacker based on threat intelligence obtained from attack feature analysis in a two-stage ensemble learning scheme. Using foundations from pretense theory in child play, Dolus takes advantage of elastic capacity provisioning via 'quarantine virtual machines' and SDxI policy co-ordination across multiple network domains to deceive the attacker by creating a false sense of success. From the time gained through pretense initiation, Dolus enables cloud service providers to decide on a variety of policies to mitigate the attack impact, without disrupting the cloud services experience for legitimate users. We evaluate the efficacy of Dolus using a GENI Cloud testbed and demonstrate its real-time capabilities to: (a) detect DDoS attacks and redirect attack traffic to quarantine resources to engage the attacker under pretense, and (b) coordinate SDxI policies to possibly block DDoS attacks closer to the attack source(s).
2018-05-10