Biblio

Filters: Author is Das, A.  [Clear All Filters]
2020-11-16
Choudhury, O., Sylla, I., Fairoza, N., Das, A..  2019.  A Blockchain Framework for Ensuring Data Quality in Multi-Organizational Clinical Trials. 2019 IEEE International Conference on Healthcare Informatics (ICHI). :1–9.
The cost and complexity of conducting multi-site clinical trials have significantly increased over time, with site monitoring, data management, and Institutional Review Board (IRB) amendments being key drivers. Trial sponsors, such as pharmaceutical companies, are also increasingly outsourcing trial management to multiple organizations. Enforcing compliance with standard operating procedures, such as preserving data privacy for human subject protection, is crucial for upholding the integrity of a study and its findings. Current efforts to ensure quality of data collected at multiple sites and by multiple organizations lack a secure, trusted, and efficient framework for fragmented data capture. To address this challenge, we propose a novel data management infrastructure based on a permissioned blockchain with private channels, smart contracts, and distributed ledgers. We use an example multi-organizational clinical trial to design and implement a blockchain network: generate activity-specific private channels to segregate data flow for confidentiality, write channel-specific smart contracts to enforce regulatory guidelines, monitor the immutable transaction log to detect protocol breach, and auto-generate audit trail. Through comprehensive experimental study, we demonstrate that our system handles high-throughput transactions, exhibits low-latency, and constitutes a trusted, scalable solution.
2018-03-19
Das, A., Shen, M. Y., Shashanka, M., Wang, J..  2017.  Detection of Exfiltration and Tunneling over DNS. 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA). :737–742.

This paper proposes a method to detect two primary means of using the Domain Name System (DNS) for malicious purposes. We develop machine learning models to detect information exfiltration from compromised machines and the establishment of command & control (C&C) servers via tunneling. We validate our approach by experiments where we successfully detect a malware used in several recent Advanced Persistent Threat (APT) attacks [1]. The novelty of our method is its robustness, simplicity, scalability, and ease of deployment in a production environment.

2018-03-05
Das, A., Shen, M. Y., Wang, J..  2017.  Modeling User Communities for Identifying Security Risks in an Organization. 2017 IEEE International Conference on Big Data (Big Data). :4481–4486.

In this paper, we address the problem of peer grouping employees in an organization for identifying security risks. Our motivation for studying peer grouping is its importance for a clear understanding of user and entity behavior analytics (UEBA) that is the primary tool for identifying insider threat through detecting anomalies in network traffic. We show that using Louvain method of community detection it is possible to automate peer group creation with feature-based weight assignments. Depending on the number of employees and their features we show that it is also possible to give each group a meaningful description. We present three new algorithms: one that allows an addition of new employees to already generated peer groups, another that allows for incorporating user feedback, and lastly one that provides the user with recommended nodes to be reassigned. We use Niara's data to validate our claims. The novelty of our method is its robustness, simplicity, scalability, and ease of deployment in a production environment.

2015-05-04
Ghatak, S., Lodh, A., Saha, E., Goyal, A., Das, A., Dutta, S..  2014.  Development of a keyboardless social networking website for visually impaired: SocialWeb. Global Humanitarian Technology Conference - South Asia Satellite (GHTC-SAS), 2014 IEEE. :232-236.

Over the past decade, we have witnessed a huge upsurge in social networking which continues to touch and transform our lives till present day. Social networks help us to communicate amongst our acquaintances and friends with whom we share similar interests on a common platform. Globally, there are more than 200 million visually impaired people. Visual impairment has many issues associated with it, but the one that stands out is the lack of accessibility to content for entertainment and socializing safely. This paper deals with the development of a keyboard less social networking website for visually impaired. The term keyboard less signifies minimum use of keyboard and allows the user to explore the contents of the website using assistive technologies like screen readers and speech to text (STT) conversion technologies which in turn provides a user friendly experience for the target audience. As soon as the user with minimal computer proficiency opens this website, with the help of screen reader, he/she identifies the username and password fields. The user speaks out his username and with the help of STT conversion (using Web Speech API), the username is entered. Then the control moves over to the password field and similarly, the password of the user is obtained and matched with the one saved in the website database. The concept of acoustic fingerprinting has been implemented for successfully validating the passwords of registered users and foiling intentions of malicious attackers. On successful match of the passwords, the user is able to enjoy the services of the website without any further hassle. Once the access obstacles associated to deal with social networking sites are successfully resolved and proper technologies are put to place, social networking sites can be a rewarding, fulfilling, and enjoyable experience for the visually impaired people.