Biblio

Filters: Author is Abu-Ghazaleh, Nael  [Clear All Filters]
2022-12-01
Ajorpaz, Samira Mirbagher, Moghimi, Daniel, Collins, Jeffrey Neal, Pokam, Gilles, Abu-Ghazaleh, Nael, Tullsen, Dean.  2022.  EVAX: Towards a Practical, Pro-active & Adaptive Architecture for High Performance & Security. 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO). :1218—1236.
This paper provides an end-to-end solution to defend against known microarchitectural attacks such as speculative execution attacks, fault-injection attacks, covert and side channel attacks, and unknown or evasive versions of these attacks. Current defenses are attack specific and can have unacceptably high performance overhead. We propose an approach that reduces the overhead of state-of-art defenses by over 95%, by applying defenses only when attacks are detected. Many current proposed mitigations are not practical for deployment; for example, InvisiSpec has 27% overhead and Fencing has 74% overhead while protecting against only Spectre attacks. Other mitigations carry similar performance penalties. We reduce the overhead for InvisiSpec to 1.26% and for Fencing to 3.45% offering performance and security for not only spectre attacks but other known transient attacks as well, including the dangerous class of LVI and Rowhammer attacks, as well as covering a large set of future evasive and zero-day attacks. Critical to our approach is an accurate detector that is not fooled by evasive attacks and that can generalize to novel zero-day attacks. We use a novel Generative framework, Evasion Vaccination (EVAX) for training ML models and engineering new security-centric performance counters. EVAX significantly increases sensitivity to detect and classify attacks in time for mitigation to be deployed with low false positives (4 FPs in every 1M instructions in our experiments). Such performance enables efficient and timely mitigations, enabling the processor to automatically switch between performance and security as needed.
2018-05-16
Khasawneh, Khaled N., Abu-Ghazaleh, Nael, Ponomarev, Dmitry, Yu, Lei.  2017.  RHMD: Evasion-resilient Hardware Malware Detectors. Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture. :315–327.

Hardware Malware Detectors (HMDs) have recently been proposed as a defense against the proliferation of malware. These detectors use low-level features, that can be collected by the hardware performance monitoring units on modern CPUs to detect malware as a computational anomaly. Several aspects of the detector construction have been explored, leading to detectors with high accuracy. In this paper, we explore the question of how well evasive malware can avoid detection by HMDs. We show that existing HMDs can be effectively reverse-engineered and subsequently evaded, allowing malware to hide from detection without substantially slowing it down (which is important for certain types of malware). This result demonstrates that the current generation of HMDs can be easily defeated by evasive malware. Next, we explore how well a detector can evolve if it is exposed to this evasive malware during training. We show that simple detectors, such as logistic regression, cannot detect the evasive malware even with retraining. More sophisticated detectors can be retrained to detect evasive malware, but the retrained detectors can be reverse-engineered and evaded again. To address these limitations, we propose a new type of Resilient HMDs (RHMDs) that stochastically switch between different detectors. These detectors can be shown to be provably more difficult to reverse engineer based on resent results in probably approximately correct (PAC) learnability theory. We show that indeed such detectors are resilient to both reverse engineering and evasion, and that the resilience increases with the number and diversity of the individual detectors. Our results demonstrate that these HMDs offer effective defense against evasive malware at low additional complexity.