Biblio

Filters: Author is Hwang, Inseok  [Clear All Filters]
2020-01-21
Zhang, Chiyu, Hwang, Inseok.  2019.  Decentralized Multi-Sensor Scheduling for Multi-Target Tracking and Identity Management. 2019 18th European Control Conference (ECC). :1804–1809.
This paper proposes a multi-target tracking and identity management method with multiple sensors: a primary sensor with a large detection range to provide the targets' state estimates, and multiple secondary sensors capable of recognizing the targets' identities. Each of the secondary sensors is assigned to a sector of the operation area; a secondary sensor decides which target in its assigned sector to be identified and controls itself to identify the target. We formulate the decision-making process as an optimization problem to minimize the uncertainty of the targets' identities subject to the sensor dynamic constraints. The proposed algorithm is decentralized since the secondary sensors only communicate with the primary sensor for the target information, and need not to synchronize with each other. By integrating the proposed algorithm with the existing multi-target tracking algorithms, we develop a closed-loop multi-target tracking and identity management algorithm. The effectiveness of the proposed algorithm is demonstrated with illustrative numerical examples.
2018-05-17
Goppert, James, Gallagher, John C., Hwang, Inseok, Matson, Eric.  2014.  Model Checking of a Flapping-Wing Mirco-Air-Vehicle Trajectory Tracking Controller Subject to Disturbances. Robot Intelligence Technology and Applications 2: Results from the 2nd International Conference on Robot Intelligence Technology and Applications. :531–543.

This paper proposes a model checking method for a trajectory tracking controller for a flapping wing micro-air-vehicle (MAV) under disturbance. Due to the coupling of the continuous vehicle dynamics and the discrete guidance laws, the system is a hybrid system. Existing hybrid model checkers approximate the model by partitioning the continuous state space into invariant regions (flow pipes) through the use of reachable set computations. There are currently no efficient methods for accounting for unknown disturbances to the system. Neglecting disturbances for the trajectory tracking problem underestimates the reachable set and can fail to detect when the system would reach an unsafe condition. For linear systems, we propose the use of the H-infinity norm to augment the flow pipes and account for disturbances. We show that dynamic inversion can be coupled with our method to address the nonlinearities in the flapping-wing control system.