Biblio

Filters: Author is Shi, Weidong  [Clear All Filters]
2022-06-09
Chen, Xiujuan, Liu, Jing, Lu, Tiantian, Cheng, Dengfeng, Shi, Weidong, Lei, Ting, Kang, Peng.  2021.  Operation safety analysis of CMOA controllable switch under lightning intrusion wave in UHV AC substation. 2021 International Conference on Power System Technology (POWERCON). :1452–1456.
The metal oxide arrester (MOA, shortly) is installed on the line side of the substation, which is the first line of defense for the overvoltage limitation of lightning intrusion wave. In order to deeply limit the switching overvoltage and cancel the closing resistance of the circuit breaker, the arrester is replaced by the controllable metal oxide arrester (CMOA, shortly) in the new technology. The controllable switch of CMOA can be mechanical switch or thyristor switch. Thyristor switches are sensitive to the current and current change rate (di/dt) under lightning intrusion wave. If the switch cannot withstand, appropriate protective measures must be taken to ensure the safe operation of the controllable switch under this working condition. The 1000kV West Beijing to Shijiazhuang UHV AC transmission and transformation expansion project is the first project of pilot application of CMOA. CMOA were installed at both ends of the outgoing branch of Dingtai line I. In order to study the influence of lightning intrusion wave on the controllable switch of CMOA, this paper selected this project to simulate the lightning stroke on the incoming section of Dingtai line I in Beijing West substation in the process of system air closing or single-phase reclosing, and obtained the current and di/dt of the controllable switch through CMOA under this working condition. Then the performances of mechanical and thyristor control switches were checked respectively. The results showed that the mechanical switch could withstand without protective measures. The tolerance of thyristor switch to i and di/dt exceeded the limit value, and measures should be taken to protect and limit it. In this paper, the protection measures of current limiting reactor were given, and the limiting effect of the protection measures was verified by simulation and test. It could fully meet the requirements and ensure the safe operation of thyristor controllable switch.
2021-06-01
Xu, Lei, Gao, Zhimin, Fan, Xinxin, Chen, Lin, Kim, Hanyee, Suh, Taeweon, Shi, Weidong.  2020.  Blockchain Based End-to-End Tracking System for Distributed IoT Intelligence Application Security Enhancement. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1028–1035.
IoT devices provide a rich data source that is not available in the past, which is valuable for a wide range of intelligence applications, especially deep neural network (DNN) applications that are data-thirsty. An established DNN model provides useful analysis results that can improve the operation of IoT systems in turn. The progress in distributed/federated DNN training further unleashes the potential of integration of IoT and intelligence applications. When a large number of IoT devices are deployed in different physical locations, distributed training allows training modules to be deployed to multiple edge data centers that are close to the IoT devices to reduce the latency and movement of large amounts of data. In practice, these IoT devices and edge data centers are usually owned and managed by different parties, who do not fully trust each other or have conflicting interests. It is hard to coordinate them to provide end-to-end integrity protection of the DNN construction and application with classical security enhancement tools. For example, one party may share an incomplete data set with others, or contribute a modified sub DNN model to manipulate the aggregated model and affect the decision-making process. To mitigate this risk, we propose a novel blockchain based end-to-end integrity protection scheme for DNN applications integrated with an IoT system in the edge computing environment. The protection system leverages a set of cryptography primitives to build a blockchain adapted for edge computing that is scalable to handle a large number of IoT devices. The customized blockchain is integrated with a distributed/federated DNN to offer integrity and authenticity protection services.
2019-04-01
Gao, Zhimin, Xu, Lei, Turner, Glenn, Patel, Brijesh, Diallo, Nour, Chen, Lin, Shi, Weidong.  2018.  Blockchain-based Identity Management with Mobile Device. Proceedings of the 1st Workshop on Cryptocurrencies and Blockchains for Distributed Systems. :66–70.

Blockchain is a powerful and distributed platform for transactions which require a unified, resilient, transparent and consensus-based record keeping system. It has been applied to scenarios like smart city, supply chain, medical data storing and sharing, and etc. Many works have been done on improving the performance and security of such systems. However, there is a lack of the mechanism of identity binding when a human being is involved in corresponding physical world, i.e., if one is involved in an activity, his/her identity in the real world should be correctly reflected in the blockchain system. To mitigate this gap, we propose BlockID, a novel framework for people identity management that leverages biometric authentication and trusted computing technology. We also develop a prototype to demonstrate its feasibility in practice.

2021-10-21
Xu, Lei, Chen, Lin, Gao, Zhimin, Chang, Yanling, Iakovou, Eleftherios, Shi, Weidong.  2018.  Binding the Physical and Cyber Worlds: A Blockchain Approach for Cargo Supply Chain Security Enhancement. 2018 IEEE International Symposium on Technologies for Homeland Security (HST). :1-5.
Maritime transportation plays a critical role for the U.S. and global economies, and has evolved into a complex system that involves a plethora of supply chain stakeholders spread around the globe. The inherent complexity brings huge security challenges including cargo loss and high burdens in cargo inspection against illicit activities and potential terrorist attacks. The emerging blockchain technology provides a promising tool to build a unified maritime cargo tracking system critical for cargo security. However, most existing efforts focus on transportation data itself, while ignoring how to bind the physical cargo movements and information managed by the system consistently. This can severely undermine the effectiveness of securing cargo transportation. To fulfill this gap, we propose a binding scheme leveraging a novel digital identity management mechanism. The digital identity management mechanism maps the best practice in the physical world to the cyber world and can be seamlessly integrated with a blockchain-based cargo management system.
2018-05-24
Chen, Lin, Xu, Lei, Shah, Nolan, Diallo, Nour, Gao, Zhimin, Lu, Yang, Shi, Weidong.  2017.  Unraveling Blockchain Based Crypto-Currency System Supporting Oblivious Transactions: A Formalized Approach. Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts. :23–28.

User privacy is an important issue in a blockchain based transaction system. Bitcoin, being one of the most widely used blockchain based transaction system, fails to provide enough protection on users' privacy. Many subsequent studies focus on establishing a system that hides the linkage between the identities (pseudonyms) of users and the transactions they carry out in order to provide a high level of anonymity. Examples include Zerocoin, Zerocash and so on. It thus becomes an interesting question whether such new transaction systems do provide enough protection on users' privacy. In this paper, we propose a novel and effective approach for de-anonymizing these transaction systems by leveraging information in the system that is not directly related, including the number of transactions made by each identity and time stamp of sending and receiving. Combining probability studies with optimization tools, we establish a model which allows us to determine, among all possible ways of linking between transactions and identities, the one that is most likely to be true. Subsequent transaction graph analysis could then be carried out, leading to the de-anonymization of the system. To solve the model, we provide exact algorithms based on mixed integer linear programming. Our research also establishes interesting relationships between the de-anonymization problem and other problems studied in the literature of theoretical computer science, e.g., the graph matching problem and scheduling problem.