Biblio

Filters: Author is Younis, M.  [Clear All Filters]
2015-05-04
Ward, J.R., Younis, M..  2014.  Examining the Effect of Wireless Sensor Network Synchronization on Base Station Anonymity. Military Communications Conference (MILCOM), 2014 IEEE. :204-209.

In recent years, Wireless Sensor Networks (WSNs) have become valuable assets to both the commercial and military communities with applications ranging from industrial control on a factory floor to reconnaissance of a hostile border. A typical WSN topology that applies to most applications allows sensors to act as data sources that forward their measurements to a central sink or base station (BS). The unique role of the BS makes it a natural target for an adversary that desires to achieve the most impactful attack possible against a WSN. An adversary may employ traffic analysis techniques such as evidence theory to identify the BS based on network traffic flow even when the WSN implements conventional security mechanisms. This motivates a need for WSN operators to achieve improved BS anonymity to protect the identity, role, and location of the BS. Many traffic analysis countermeasures have been proposed in literature, but are typically evaluated based on data traffic only, without considering the effects of network synchronization on anonymity performance. In this paper we use evidence theory analysis to examine the effects of WSN synchronization on BS anonymity by studying two commonly used protocols, Reference Broadcast Synchronization (RBS) and Timing-synch Protocol for Sensor Networks (TPSN).

Ward, J.R., Younis, M..  2014.  A Metric for Evaluating Base Station Anonymity in Acknowledgement-Based Wireless Sensor Networks. Military Communications Conference (MILCOM), 2014 IEEE. :216-221.

In recent years, Wireless Sensor Networks (WSNs) have become valuable assets to both the commercial and military communities with applications ranging from industrial automation and product tracking to intrusion detection at a hostile border. A typical WSN topology allows sensors to act as data sources that forward their measurements to a central sink or base station (BS). The unique role of the BS makes it a natural target for an adversary that desires to achieve the most impactful attack possible against a WSN. An adversary may employ traffic analysis techniques to identify the BS based on network traffic flow even when the WSN implements conventional security mechanisms. This motivates a need for WSN operators to achieve improved BS anonymity to protect the identity, role, and location of the BS. Although a variety of countermeasures have been proposed to improve BS anonymity, those techniques are typically evaluated based on a WSN that does not employ acknowledgements. In this paper we propose an enhanced evidence theory metric called Acknowledgement-Aware Evidence Theory (AAET) that more accurately characterizes BS anonymity in WSNs employing acknowledgements. We demonstrate AAET's improved robustness to a variety of configurations through simulation.