Biblio

Filters: Author is Kim, H. K.  [Clear All Filters]
2019-06-10
Kim, H. M., Song, H. M., Seo, J. W., Kim, H. K..  2018.  Andro-Simnet: Android Malware Family Classification Using Social Network Analysis. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1-8.

While the rapid adaptation of mobile devices changes our daily life more conveniently, the threat derived from malware is also increased. There are lots of research to detect malware to protect mobile devices, but most of them adopt only signature-based malware detection method that can be easily bypassed by polymorphic and metamorphic malware. To detect malware and its variants, it is essential to adopt behavior-based detection for efficient malware classification. This paper presents a system that classifies malware by using common behavioral characteristics along with malware families. We measure the similarity between malware families with carefully chosen features commonly appeared in the same family. With the proposed similarity measure, we can classify malware by malware's attack behavior pattern and tactical characteristics. Also, we apply community detection algorithm to increase the modularity within each malware family network aggregation. To maintain high classification accuracy, we propose a process to derive the optimal weights of the selected features in the proposed similarity measure. During this process, we find out which features are significant for representing the similarity between malware samples. Finally, we provide an intuitive graph visualization of malware samples which is helpful to understand the distribution and likeness of the malware networks. In the experiment, the proposed system achieved 97% accuracy for malware classification and 95% accuracy for prediction by K-fold cross-validation using the real malware dataset.

2018-05-24
Kwon, Y., Kim, H. K., Koumadi, K. M., Lim, Y. H., Lim, J. I..  2017.  Automated Vulnerability Analysis Technique for Smart Grid Infrastructure. 2017 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.

A smart grid is a fully automated power electricity network, which operates, protects and controls all its physical environments of power electricity infrastructure being able to supply energy in an efficient and reliable way. As the importance of cyber-physical system (CPS) security is growing, various vulnerability analysis methodologies for general systems have been suggested, whereas there has been few practical research targeting the smart grid infrastructure. In this paper, we highlight the significance of security vulnerability analysis in the smart grid environment. Then we introduce various automated vulnerability analysis techniques from executable files. In our approach, we propose a novel binary-based vulnerability discovery method for AMI and EV charging system to automatically extract security-related features from the embedded software. Finally, we present the test result of vulnerability discovery applied for AMI and EV charging system in Korean smart grid environment.