Biblio

Filters: Author is Guo, W.  [Clear All Filters]
2021-03-01
Sun, S. C., Guo, W..  2020.  Approximate Symbolic Explanation for Neural Network Enabled Water-Filling Power Allocation. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). :1–4.
Water-filling (WF) is a well-established iterative solution to optimal power allocation in parallel fading channels. Slow iterative search can be impractical for allocating power to a large number of OFDM sub-channels. Neural networks (NN) can transform the iterative WF threshold search process into a direct high-dimensional mapping from channel gain to transmit power solution. Our results show that the NN can perform very well (error 0.05%) and can be shown to be indeed performing approximate WF power allocation. However, there is no guarantee on the NN is mapping between channel states and power output. Here, we attempt to explain the NN power allocation solution via the Meijer G-function as a general explainable symbolic mapping. Our early results indicate that whilst the Meijer G-function has universal representation potential, its large search space means finding the best symbolic representation is challenging.
2021-02-16
He, J., Tan, Y., Guo, W., Xian, M..  2020.  A Small Sample DDoS Attack Detection Method Based on Deep Transfer Learning. 2020 International Conference on Computer Communication and Network Security (CCNS). :47—50.
When using deep learning for DDoS attack detection, there is a general degradation in detection performance due to small sample size. This paper proposes a small-sample DDoS attack detection method based on deep transfer learning. First, deep learning techniques are used to train several neural networks that can be used for transfer in DDoS attacks with sufficient samples. Then we design a transferability metric to compare the transfer performance of different networks. With this metric, the network with the best transfer performance can be selected among the four networks. Then for a small sample of DDoS attacks, this paper demonstrates that the deep learning detection technique brings deterioration in performance, with the detection performance dropping from 99.28% to 67%. Finally, we end up with a 20.8% improvement in detection performance by deep transfer of the 8LANN network in the target domain. The experiment shows that the detection method based on deep transfer learning proposed in this paper can well improve the performance deterioration of deep learning techniques for small sample DDoS attack detection.
2020-12-21
Guo, W., Atthanayake, I., Thomas, P..  2020.  Vertical Underwater Molecular Communications via Buoyancy: Gaussian Velocity Distribution of Signal. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Underwater communication is vital for a variety of defence and scientific purposes. Current optical and sonar based carriers can deliver high capacity data rates, but their range and reliability is hampered by heavy propagation loss. A vertical Molecular Communication via Buoyancy (MCvB) channel is experimentally investigated here, where the dominant propagation force is buoyancy. Sequential puffs representing modulated symbols are injected and after the initial loss of momentum, the signal is driven by buoyancy forces which apply to both upwards and downwards channels. Coupled with the complex interaction of turbulent and viscous diffusion, we experimentally demonstrate that sequential symbols exhibit a Gaussian velocity spatial distribution. Our experimental results use Particle Image Velocimetry (PIV) to trace molecular clusters and infer statistical characteristics of their velocity profile. We believe our experimental paper's results can be the basis for long range underwater vertical communication between a deep sea vehicle and a surface buoy, establishing a covert and reliable delay-tolerant data link. The statistical distribution found in this paper is akin to the antenna pattern and the knowledge can be used to improve physical security.
2018-05-30
Li, F., Chen, J., Shu, F., Zhang, J., Qing, S., Guo, W..  2017.  Research of Security Risk in Electric Power Information Network. 2017 6th International Conference on Computer Science and Network Technology (ICCSNT). :361–365.

The factors that threaten electric power information network are analyzed. Aiming at the weakness of being unable to provide numerical value of risk, this paper presents the evaluation index system, the evaluation model and method of network security based on multilevel fuzzy comprehensive judgment. The steps and method of security evaluation by the synthesis evaluation model are provided. The results show that this method is effective to evaluate the risk of electric power information network.