Biblio

Filters: Author is Murmann, B.  [Clear All Filters]
2018-06-07
Yang, L., Murmann, B..  2017.  SRAM voltage scaling for energy-efficient convolutional neural networks. 2017 18th International Symposium on Quality Electronic Design (ISQED). :7–12.

State-of-the-art convolutional neural networks (ConvNets) are now able to achieve near human performance on a wide range of classification tasks. Unfortunately, current hardware implementations of ConvNets are memory power intensive, prohibiting deployment in low-power embedded systems and IoE platforms. One method of reducing memory power is to exploit the error resilience of ConvNets and accept bit errors under reduced supply voltages. In this paper, we extensively study the effectiveness of this idea and show that further savings are possible by injecting bit errors during ConvNet training. Measurements on an 8KB SRAM in 28nm UTBB FD-SOI CMOS demonstrate supply voltage reduction of 310mV, which results in up to 5.4× leakage power reduction and up to 2.9× memory access power reduction at 99% of floating-point classification accuracy, with no additional hardware cost. To our knowledge, this is the first silicon-validated study on the effect of bit errors in ConvNets.