Biblio
The target of security protection of the power distribution automation system (the distribution system for short) is to ensure the security of communication between the distribution terminal (terminal for short) and the distribution master station (master system for short). The encryption and authentication gateway (VPN gateway for short) for distribution system enhances the network layer communication security between the terminal and the VPN gateway. The distribution application layer encryption authentication device (master cipher machine for short) ensures the confidentiality and integrity of data transmission in application layer, and realizes the identity authentication between the master station and the terminal. All these measures are used to prevent malicious damage and attack to the master system by forging terminal identity, replay attack and other illegal operations, in order to prevent the resulting distribution network system accidents. Based on the security protection scheme of the power distribution automation system, this paper carries out the development of multi-chip encapsulation, develops IPSec Protocols software within the security chip, and realizes dual encryption and authentication function in IP layer and application layer supporting the national cryptographic algorithm.
Emerging computing relies heavily on secure backend storage for the massive size of big data originating from the Internet of Things (IoT) smart devices to the Cloud-hosted web applications. Structured Query Language (SQL) Injection Attack (SQLIA) remains an intruder's exploit of choice to pilfer confidential data from the back-end database with damaging ramifications. The existing approaches were all before the new emerging computing in the context of the Internet big data mining and as such will lack the ability to cope with new signatures concealed in a large volume of web requests over time. Also, these existing approaches were strings lookup approaches aimed at on-premise application domain boundary, not applicable to roaming Cloud-hosted services' edge Software-Defined Network (SDN) to application endpoints with large web request hits. Using a Machine Learning (ML) approach provides scalable big data mining for SQLIA detection and prevention. Unfortunately, the absence of corpus to train a classifier is an issue well known in SQLIA research in applying Artificial Intelligence (AI) techniques. This paper presents an application context pattern-driven corpus to train a supervised learning model. The model is trained with ML algorithms of Two-Class Support Vector Machine (TC SVM) and Two-Class Logistic Regression (TC LR) implemented on Microsoft Azure Machine Learning (MAML) studio to mitigate SQLIA. This scheme presented here, then forms the subject of the empirical evaluation in Receiver Operating Characteristic (ROC) curve.