Biblio

Filters: Author is Kalloniatis, Christos  [Clear All Filters]
2018-12-03
Michalopoulou, Panayiota Efthymia, Kalloniatis, Christos.  2017.  The Role of Gender Privacy in the Use of Cloud Computing Services. Proceedings of the 21st Pan-Hellenic Conference on Informatics. :13:1–13:6.

The present study's primary objective is to try to determine whether gender, combined with the educational background of the Internet users, have an effect on the way online privacy is perceived and practiced within the cloud services and specifically in social networking, e-commerce, and online banking. An online questionnaire was distributed through e-mail and the social media (Facebook, LinkedIn, and Google+). Our primary hypothesis is that an interrelationship may exist among a user's gender, educational background, and the way an online user perceives and acts regarding online privacy. An analysis of a representative sample of Greek Internet users revealed that there is an effect by gender on the online users' awareness regarding online privacy, as well as on the way they act upon it. Furthermore, we found that a correlation exists, as well regarding the Educational Background of the users and the issue of online privacy.

2018-06-20
Kosmidis, Konstantinos, Kalloniatis, Christos.  2017.  Machine Learning and Images for Malware Detection and Classification. Proceedings of the 21st Pan-Hellenic Conference on Informatics. :5:1–5:6.

Detecting malicious code with exact match on collected datasets is becoming a large-scale identification problem due to the existence of new malware variants. Being able to promptly and accurately identify new attacks enables security experts to respond effectively. My proposal is to develop an automated framework for identification of unknown vulnerabilities by leveraging current neural network techniques. This has a significant and immediate value for the security field, as current anti-virus software is typically able to recognize the malware type only after its infection, and preventive measures are limited. Artificial Intelligence plays a major role in automatic malware classification: numerous machine-learning methods, both supervised and unsupervised, have been researched to try classifying malware into families based on features acquired by static and dynamic analysis. The value of automated identification is clear, as feature engineering is both a time-consuming and time-sensitive task, with new malware studied while being observed in the wild.