Biblio
In recent years, cyber attacks have caused substantial financial losses and been able to stop fundamental public services. Among the serious attacks, Advanced Persistent Threat (APT) has emerged as a big challenge to the cyber security hitting selected companies and organisations. The main objectives of APT are data exfiltration and intelligence appropriation. As part of the APT life cycle, an attacker creates a Point of Entry (PoE) to the target network. This is usually achieved by installing malware on the targeted machine to leave a back-door open for future access. A common technique employed to breach into the network, which involves the use of social engineering, is the spear phishing email. These phishing emails may contain disguised executable files. This paper presents the disguised executable file detection (DeFD) module, which aims at detecting disguised exe files transferred over the network connections. The detection is based on a comparison between the MIME type of the transferred file and the file name extension. This module was experimentally evaluated and the results show a successful detection of disguised executable files.
The success and widespread adoption of the Internet of Things (IoT) has increased many folds over the last few years. Industries, technologists and home users recognise the importance of IoT in their lives. Essentially, IoT has brought vast industrial revolution and has helped automate many processes within organisations and homes. However, the rapid growth of IoT is also a cause for significant concern. IoT is not only plagued with security, authentication and access control issues, it also doesn't work as well as it should with fourth industrial revolution, commonly known as Industry 4.0. The absence of effective regulation, standards and weak governance has led to a continual downward trend in the security of IoT networks and devices, as well as given rise to a broad range of privacy issues. This paper examines the IoT industry and discusses the urgent need for standardisation, the benefits of governance as well as the issues affecting the IoT sector due to the absence of regulation. Additionally, through this paper, we are introducing an IoT security framework (IoTSFW) for organisations to bridge the current lack of guidelines in the IoT industry. Implementation of the guidelines, defined in the proposed framework, will assist organisations in achieving security, privacy, sustainability and scalability within their IoT networks.
Mobile devices offer a convenient way of accessing our digital lives and many of those devices hold sensitive data that needs protecting. Mobile and wireless communications networks, combined with cloud computing as Mobile Cloud Computing (MCC), have emerged as a new way to provide a rich computational environment for mobile users, and business opportunities for cloud providers and network operators. It is the convenience of the cloud service and the ability to sync across multiple platforms/devices that has become the attraction to cloud computing. However, privacy, security and trust issues may still be a barrier that impedes the adoption of MCC by some undecided potential users. Those users still need to be convinced of the security of mobile devices, wireless networks and cloud computing. This paper is the result of a comprehensive review of one typical secure measure-authentication methodology research, spanning a period of five years from 2012–2017. MCC capabilities for sharing distributed resources is discussed. Authentication in MCC is divided in to two categories and the advantages of one category over its counterpart are presented, in the process of attempting to identify the most secure authentication scheme.