Biblio

Filters: Author is Kumar, Rajesh  [Clear All Filters]
2023-06-09
Kumar, Rajesh.  2022.  Quantitative safety-security risk analysis of interconnected cyber-infrastructures. 2022 IEEE 10th Region 10 Humanitarian Technology Conference (R10-HTC). :100—106.
Modern day cyber-infrastructures are critically dependent on each other to provide essential services. Current frameworks typically focus on the risk analysis of an isolated infrastructure. Evaluation of potential disruptions taking the heterogeneous cyber-infrastructures is vital to note the cascading disruption vectors and determine the appropriate interventions to limit the damaging impact. This paper presents a cyber-security risk assessment framework for the interconnected cyber-infrastructures. Our methodology is designed to be comprehensive in terms of accommodating accidental incidents and malicious cyber threats. Technically, we model the functional dependencies between the different architectures using reliability block diagrams (RBDs). RBDs are convenient, yet powerful graphical diagrams, which succinctly describe the functional dependence between the system components. The analysis begins by selecting a service from the many services that are outputted by the synchronized operation of the architectures whose disruption is deemed critical. For this service, we design an attack fault tree (AFT). AFT is a recent graphical formalism that combines the two popular formalisms of attack trees and fault trees. We quantify the attack-fault tree and compute the risk metrics - the probability of a disruption and the damaging impact. For this purpose, we utilize the open source ADTool. We show the efficacy of our framework with an example outage incident.
2020-05-11
Khan, Riaz Ullah, Zhang, Xiaosong, Alazab, Mamoun, Kumar, Rajesh.  2019.  An Improved Convolutional Neural Network Model for Intrusion Detection in Networks. 2019 Cybersecurity and Cyberforensics Conference (CCC). :74–77.

Network intrusion detection is an important component of network security. Currently, the popular detection technology used the traditional machine learning algorithms to train the intrusion samples, so as to obtain the intrusion detection model. However, these algorithms have the disadvantage of low detection rate. Deep learning is more advanced technology that automatically extracts features from samples. In view of the fact that the accuracy of intrusion detection is not high in traditional machine learning technology, this paper proposes a network intrusion detection model based on convolutional neural network algorithm. The model can automatically extract the effective features of intrusion samples, so that the intrusion samples can be accurately classified. Experimental results on KDD99 datasets show that the proposed model can greatly improve the accuracy of intrusion detection.

2020-04-06
Khan, Riaz Ullah, Kumar, Rajesh, Alazab, Mamoun, Zhang, Xiaosong.  2019.  A Hybrid Technique To Detect Botnets, Based on P2P Traffic Similarity. 2019 Cybersecurity and Cyberforensics Conference (CCC). :136–142.
The botnet has been one of the most common threats to the network security since it exploits multiple malicious codes like worm, Trojans, Rootkit, etc. These botnets are used to perform the attacks, send phishing links, and/or provide malicious services. It is difficult to detect Peer-to-peer (P2P) botnets as compare to IRC (Internet Relay Chat), HTTP (HyperText Transfer Protocol) and other types of botnets because of having typical features of the centralization and distribution. To solve these problems, we propose an effective two-stage traffic classification method to detect P2P botnet traffic based on both non-P2P traffic filtering mechanism and machine learning techniques on conversation features. At the first stage, we filter non-P2P packages to reduce the amount of network traffic through well-known ports, DNS query, and flow counting. At the second stage, we extract conversation features based on data flow features and flow similarity. We detected P2P botnets successfully, by using Machine Learning Classifiers. Experimental evaluations show that our two-stage detection method has a higher accuracy than traditional P2P botnet detection methods.
2018-08-06
Kumar, Rajesh, Xiaosong, Zhang, Khan, Riaz Ullah, Kumar, Jay, Ahad, Ijaz.  2018.  Effective and Explainable Detection of Android Malware Based on Machine Learning Algorithms. Proceedings of the 2018 International Conference on Computing and Artificial Intelligence. :35–40.
2019-02-08
Kumar, Rajesh, Xiaosong, Zhang, Khan, Riaz Ullah, Ahad, Ijaz, Kumar, Jay.  2018.  Malicious Code Detection Based on Image Processing Using Deep Learning. Proceedings of the 2018 International Conference on Computing and Artificial Intelligence. :81-85.

In this study, we have used the Image Similarity technique to detect the unknown or new type of malware using CNN ap- proach. CNN was investigated and tested with three types of datasets i.e. one from Vision Research Lab, which contains 9458 gray-scale images that have been extracted from the same number of malware samples that come from 25 differ- ent malware families, and second was benign dataset which contained 3000 different kinds of benign software. Benign dataset and dataset vision research lab were initially exe- cutable files which were converted in to binary code and then converted in to image files. We obtained a testing ac- curacy of 98% on Vision Research dataset.