Biblio

Filters: Author is Jadhav, A.  [Clear All Filters]
2021-03-09
Venkataramana, B., Jadhav, A..  2020.  Performance Evaluation of Routing Protocols under Black Hole Attack in Cognitive Radio Mesh Network. 2020 International Conference on Emerging Smart Computing and Informatics (ESCI). :98–102.
Wireless technology is rapidly proliferating. Devices such as Laptops, PDAs and cell-phones gained a lot of importance due to the use of wireless technology. Nowadays there is also a huge demand for spectrum allocation and there is a need to utilize the maximum available spectrum in efficient manner. Cognitive Radio (CR) Network is one such intelligent radio network, designed to utilize the maximum licensed bandwidth to un-licensed users. Cognitive Radio has the capability to understand unused spectrum at a given time at a specific location. This capability helps to minimize the interference to the licensed users and improves the performance of the network. Routing protocol selection is one of the main strategies to design any wireless or wired networks. In Cognitive radio networks the selected routing protocol should be best in terms of establishing an efficient route, addressing challenges in network topology and should be able to reduce bandwidth consumption. Performance analysis of the protocols helps to select the best protocol in the network. Objective of this study is to evaluate performance of various cognitive radio network routing protocols like Spectrum Aware On Demand Routing Protocol (SORP), Spectrum Aware Mesh Routing in Cognitive Radio Networks (SAMER) and Dynamic Source Routing (DSR) with and without black hole attack using various performance parameters like Throughput, E2E delay and Packet delivery ratio with the help of NS2 simulator.
2021-03-29
Khan, S., Jadhav, A., Bharadwaj, I., Rooj, M., Shiravale, S..  2020.  Blockchain and the Identity based Encryption Scheme for High Data Security. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :1005—1008.

Using the blockchain technology to store the privatedocuments of individuals will help make data more reliable and secure, preventing the loss of data and unauthorized access. The Consensus algorithm along with the hash algorithms maintains the integrity of data simultaneously providing authentication and authorization. The paper incorporates the block chain and the Identity Based Encryption management concept. The Identity based Management system allows the encryption of the user's data as well as their identity and thus preventing them from Identity theft and fraud. These two technologies combined will result in a more secure way of storing the data and protecting the privacy of the user.

2018-08-23
Prakash, Y. W., Biradar, V., Vincent, S., Martin, M., Jadhav, A..  2017.  Smart bluetooth low energy security system. 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). :2141–2146.

The need for security in today's world has become a mandatory issue to look after. With the increase in a number of thefts, it has become a necessity to implement a smart security system. Due to the high cost of the existing smart security systems which use conventional Bluetooth and other wireless technologies and their relatively high energy consumption, implementing a security system with low energy consumption at a low cost has become the need of the hour. The objective of the paper is to build a cost effective and low energy consumption security system using the Bluetooth Low Energy (BLE) technology. This system will help the user to monitor and manage the security of the house even when the user is outside the house with the help of webpage. This paper presents the design and implementation of a security system using PSoC 4 BLE which can automatically lock and unlock the door when the user in the vicinity and leaving the vicinity of the door respectively by establishing a wireless connection between the physical lock and the smartphone. The system also captures an image of a person arriving at the house and transmits it wirelessly to a webpage. The system also notifies the user of any intrusion by sending a message and the image of the intruder to the webpage. The user can also access the door remotely on the go from the website.