Biblio

Filters: Author is Kolias, Constantinos  [Clear All Filters]
2022-01-12
Chatzigiannis, Panagiotis, Baldimtsi, Foteini, Kolias, Constantinos, Stavrou, Angelos.  2021.  Black-Box IoT: Authentication and Distributed Storage of IoT Data from Constrained Sensors. Proceedings of the International Conference on Internet-of-Things Design and Implementation (IoTDI).
We propose Black-Box IoT (BBox-IoT), a new ultra-lightweight black-box system for authenticating and storing IoT data. BBox-IoT is tailored for deployment on IoT devices (including low-Size Weight and Power sensors) which are extremely constrained in terms of computation, storage, and power. By utilizing core Blockchain principles, we ensure that the collected data is immutable and tamper-proof while preserving data provenance and non-repudiation. To realize BBox-IoT, we designed and implemented a novel chain-based hash signature scheme which only requires hashing operations and removes all synchronicity dependencies between signer and verifier. Our approach enables low-SWaP devices to authenticate removing reliance on clock synchronization. Our evaluation results show that BBox-IoT is practical in Industrial Internet of Things (IIoT) environments: even devices equipped with 16MHz microcontrollers and 2KB memory can broadcast their collected data without requiring heavy cryptographic operations or synchronicity assumptions. Finally, when compared to industry standard ECDSA, our approach is two and three orders of magnitude faster for signing and verification operations respectively. Thus, we are able to increase the total number of signing operations by more than 5000% for the same amount of power.
2023-01-30
Chatzigiannis, Panagiotis, Baldimtsi, Foteini, Kolias, Constantinos, Stavrou, Angelos.  2021.  Black-Box IoT: Authentication and Distributed Storage of IoT Data from Constrained Sensors. IoTDI '21: Proceedings of the International Conference on Internet-of-Things Design and Implementation.

We propose Black-Box IoT (BBox-IoT), a new ultra-lightweight black-box system for authenticating and storing IoT data. BBox-IoT is tailored for deployment on IoT devices (including low-Size Weight and Power sensors) which are extremely constrained in terms of computation, storage, and power. By utilizing core Blockchain principles, we ensure that the collected data is immutable and tamper-proof while preserving data provenance and non-repudiation. To realize BBox-IoT, we designed and implemented a novel chain-based hash signature scheme which only requires hashing operations and removes all synchronicity dependencies between signer and verifier. Our approach enables low-SWaP devices to authenticate removing reliance on clock synchronization. Our evaluation results show that BBox-IoT is practical in Industrial Internet of Things (IIoT) environments: even devices equipped with 16MHz microcontrollers and 2KB memory can broadcast their collected data without requiring heavy cryptographic operations or synchronicity assumptions. Finally, when compared to industry standard ECDSA, our approach is two and three orders of magnitude faster for signing and verification operations respectively. Thus, we are able to increase the total number of signing operations by more than 5000% for the same amount of power.

2021-09-16
Rieger, Craig, Kolias, Constantinos, Ulrich, Jacob, McJunkin, Timothy R..  2020.  A Cyber Resilient Design for Control Systems. 2020 Resilience Week (RWS). :18–25.
The following topics are dealt with: security of data; distributed power generation; power engineering computing; power grids; power system security; computer network security; voltage control; risk management; power system measurement; critical infrastructures.
2018-08-23
Kolias, Constantinos, Copi, Lucas, Zhang, Fengwei, Stavrou, Angelos.  2017.  Breaking BLE Beacons For Fun But Mostly Profit. Proceedings of the 10th European Workshop on Systems Security. :4:1–4:6.
Bluetooth Low Energy (BLE) Beacons introduced a novel technology that enables devices to advertise their presence in an area by constantly broadcasting a static unique identifier. The aim was to enhance services with location and context awareness. Although the hardware components of typical BLE Beacons systems are able to support adequate cryptography, the design and implementation of most publicly available BLE Beacon protocols appears to render them vulnerable to a plethora of attacks. Indeed, in this paper, we were able to perform user tracking, user behavior monitoring, spoofing as well as denial of service (DoS) of many supported services. Our aim is to show that these attacks stem from design flaws of the underlying protocols and assumptions made for the BLE beacons protocols. Using a clearly defined threat model, we provide a formal analysis of the adversarial capabilities and requirements and the attack impact on security and privacy for the end-user. Contrary to popular belief, BLE technology can be exploited even by low-skilled adversaries leading to exposure of user information. To demonstrate our attacks in practice, we selected Apple's iBeacon technology, as a case study. However, our analysis can be easily generalized to other BLE Beacon technologies.