Biblio

Filters: Author is Kulkarni, S.  [Clear All Filters]
2018-06-20
Kulkarni, S., Sawihalli, A., Ambika, R., Naik, L..  2017.  Mobile powered sub-group detection/formation using taste-based collaborative filtering technique. 2017 Innovations in Power and Advanced Computing Technologies (i-PACT). :1–5.

Social networking sites such as Flickr, YouTube, Facebook, etc. contain huge amount of user contributed data for a variety of real-world events. We describe an unsupervised approach to the problem of automatically detecting subgroups of people holding similar tastes or either taste. Item or taste tags play an important role in detecting group or subgroup, if two or more persons share the same opinion on the item or taste, they tend to use similar content. We consider the latter to be an implicit attitude. In this paper, we have investigated the impact of implicit and explicit attitude in two genres of social media discussion data, more formal wikipedia discussions and a debate discussion forum that is much more informal. Experimental results strongly suggest that implicit attitude is an important complement for explicit attitudes (expressed via sentiment) and it can improve the sub-group detection performance independent of genre. Here, we have proposed taste-based group, which can enhance the quality of service.

2015-05-05
Raut, R.D., Kulkarni, S., Gharat, N.N..  2014.  Biometric Authentication Using Kekre's Wavelet Transform. Electronic Systems, Signal Processing and Computing Technologies (ICESC), 2014 International Conference on. :99-104.

This paper proposes an enhanced method for personal authentication based on finger Knuckle Print using Kekre's wavelet transform (KWT). Finger-knuckle-print (FKP) is the inherent skin patterns of the outer surface around the phalangeal joint of one's finger. It is highly discriminable and unique which makes it an emerging promising biometric identifier. Kekre's wavelet transform is constructed from Kekre's transform. The proposed system is evaluated on prepared FKP database that involves all categories of FKP. The total database of 500 samples of FKP. This paper focuses the different image enhancement techniques for the pre-processing of the captured images. The proposed algorithm is examined on 350 training and 150 testing samples of database and shows that the quality of database and pre-processing techniques plays important role to recognize the individual. The experimental result calculate the performance parameters like false acceptance rate (FAR), false rejection rate (FRR), True Acceptance rate (TAR), True rejection rate (TRR). The tested result demonstrated the improvement in EER (Error Equal Rate) which is very much important for authentication. The experimental result using Kekre's algorithm along with image enhancement shows that the finger knuckle recognition rate is better than the conventional method.