Biblio

Filters: Author is Diop, Aïda  [Clear All Filters]
2020-05-22
Desmoulins, Nicolas, Diop, Aïda, Rafflé, Yvan, Traoré, Jacques, Gratesac, Josselin.  2019.  Practical Anonymous Attestation-based Pseudonym Schemes for Vehicular Networks. 2019 IEEE Vehicular Networking Conference (VNC). :1—8.

Vehicular communication systems increase traffic efficiency and safety by allowing vehicles to share safety-related information and location-based services. Pseudonym schemes are the standard solutions providing driver/vehicle anonymity, whilst enforcing vehicle accountability in case of liability issues. State-of-the-art PKI-based pseudonym schemes present scalability issues, notably due to the centralized architecture of certificate-based solutions. The first Direct Anonymous Attestation (DAA)-based pseudonym scheme was introduced at VNC 2017, providing a decentralized approach to the pseudonym generation and update phases. The DAA-based construction leverages the properties of trusted computing, allowing vehicles to autonomously generate their own pseudonyms by using a (resource constrained) Trusted Hardware Module or Component (TC). This proposition however requires the TC to delegate part of the (heavy) pseudonym generation computations to the (more powerful) vehicle's On-Board Unit (OBU), introducing security and privacy issues in case the OBU becomes compromised. In this paper, we introduce a novel pseudonym scheme based on a variant of DAA, namely a pre-DAA-based pseudonym scheme. All secure computations in the pre-DAA pseudonym lifecycle are executed by the secure element, thus creating a secure enclave for pseudonym generation, update, and revocation. We instantiate vehicle-to-everything (V2X) with our pre-DAA solution, thus ensuring user anonymity and user-controlled traceability within the vehicular network. In addition, the pre-DAA-based construction transfers accountability from the vehicle to the user, thus complying with the many-to-many driver/vehicle relation. We demonstrate the efficiency of our solution with a prototype implementation on a standard Javacard (acting as a TC), showing that messages can be anonymously signed and verified in less than 50 ms.

2018-09-12
Canard, Sébastien, Diop, Aïda, Kheir, Nizar, Paindavoine, Marie, Sabt, Mohamed.  2017.  BlindIDS: Market-Compliant and Privacy-Friendly Intrusion Detection System over Encrypted Traffic. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. :561–574.

The goal of network intrusion detection is to inspect network traffic in order to identify threats and known attack patterns. One of its key features is Deep Packet Inspection (DPI), that extracts the content of network packets and compares it against a set of detection signatures. While DPI is commonly used to protect networks and information systems, it requires direct access to the traffic content, which makes it blinded against encrypted network protocols such as HTTPS. So far, a difficult choice was to be made between the privacy of network users and security through the inspection of their traffic content to detect attacks or malicious activities. This paper presents a novel approach that bridges the gap between network security and privacy. It makes possible to perform DPI directly on encrypted traffic, without knowing neither the traffic content, nor the patterns of detection signatures. The relevance of our work is that it preserves the delicate balance in the security market ecosystem. Indeed, security editors will be able to protect their distinctive detection signatures and supply service providers only with encrypted attack patterns. In addition, service providers will be able to integrate the encrypted signatures in their architectures and perform DPI without compromising the privacy of network communications. Finally, users will be able to preserve their privacy through traffic encryption, while also benefiting from network security services. The extensive experiments conducted in this paper prove that, compared to existing encryption schemes, our solution reduces by 3 orders of magnitude the connection setup time for new users, and by 6 orders of magnitude the consumed memory space on the DPI appliance.