Biblio
For sharing resources using ad hoc communication MANET are quite effective and scalable medium. MANET is a distributed, decentralized, dynamic network with no fixed infrastructure, which are self- organized and self-managed. Achieving high security level is a major challenge in case of MANET. Layered architecture is one of the ways for handling security challenges, which enables collection and analysis of data from different security dimensions. This work proposes a novel multi-layered outlier detection algorithm using hierarchical similarity metric with hierarchical categorized data. Network performance with and without the presence of outlier is evaluated for different quality-of-service parameters like percentage of APDR and AT for small (100 to 200 nodes), medium (200 to 1000 nodes) and large (1000 to 3000 nodes) scale networks. For a network with and without outliers minimum improvements observed are 9.1 % and 0.61 % for APDR and AT respectively while the maximum improvements of 22.1 % and 104.1 %.
With the advancement in technology, industry, e-commerce and research a large amount of complex and pervasive digital data is being generated which is increasing at an exponential rate and often termed as big data. Traditional Data Storage systems are not able to handle Big Data and also analyzing the Big Data becomes a challenge and thus it cannot be handled by traditional analytic tools. Cloud Computing can resolve the problem of handling, storage and analyzing the Big Data as it distributes the big data within the cloudlets. No doubt, Cloud Computing is the best answer available to the problem of Big Data storage and its analyses but having said that, there is always a potential risk to the security of Big Data storage in Cloud Computing, which needs to be addressed. Data Privacy is one of the major issues while storing the Big Data in a Cloud environment. Data Mining based attacks, a major threat to the data, allows an adversary or an unauthorized user to infer valuable and sensitive information by analyzing the results generated from computation performed on the raw data. This thesis proposes a secure k-means data mining approach assuming the data to be distributed among different hosts preserving the privacy of the data. The approach is able to maintain the correctness and validity of the existing k-means to generate the final results even in the distributed environment.