Biblio

Filters: Author is Xiang, Y.  [Clear All Filters]
2021-01-20
Li, M., Chang, H., Xiang, Y., An, D..  2020.  A Novel Anti-Collusion Audio Fingerprinting Scheme Based on Fourier Coefficients Reversing. IEEE Signal Processing Letters. 27:1794—1798.

Most anti-collusion audio fingerprinting schemes are aiming at finding colluders from the illegal redistributed audio copies. However, the loss caused by the redistributed versions is inevitable. In this letter, a novel fingerprinting scheme is proposed to eliminate the motivation of collusion attack. The audio signal is transformed to the frequency domain by the Fourier transform, and the coefficients in frequency domain are reversed in different degrees according to the fingerprint sequence. Different from other fingerprinting schemes, the coefficients of the host media are excessively modified by the proposed method in order to reduce the quality of the colluded version significantly, but the imperceptibility is well preserved. Experiments show that the colluded audio cannot be reused because of the poor quality. In addition, the proposed method can also resist other common attacks. Various kinds of copyright risks and losses caused by the illegal redistribution are effectively avoided, which is significant for protecting the copyright of audio.

2019-01-16
Bai, X., Niu, W., Liu, J., Gao, X., Xiang, Y., Liu, J..  2018.  Adversarial Examples Construction Towards White-Box Q Table Variation in DQN Pathfinding Training. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). :781–787.

As a new research hotspot in the field of artificial intelligence, deep reinforcement learning (DRL) has achieved certain success in various fields such as robot control, computer vision, natural language processing and so on. At the same time, the possibility of its application being attacked and whether it have a strong resistance to strike has also become a hot topic in recent years. Therefore, we select the representative Deep Q Network (DQN) algorithm in deep reinforcement learning, and use the robotic automatic pathfinding application as a countermeasure application scenario for the first time, and attack DQN algorithm against the vulnerability of the adversarial samples. In this paper, we first use DQN to find the optimal path, and analyze the rules of DQN pathfinding. Then, we propose a method that can effectively find vulnerable points towards White-Box Q table variation in DQN pathfinding training. Finally, we build a simulation environment as a basic experimental platform to test our method, through multiple experiments, we can successfully find the adversarial examples and the experimental results show that the supervised method we proposed is effective.

2018-02-06
Nosouhi, M. R., Pham, V. V. H., Yu, S., Xiang, Y., Warren, M..  2017.  A Hybrid Location Privacy Protection Scheme in Big Data Environment. GLOBECOM 2017 - 2017 IEEE Global Communications Conference. :1–6.

Location privacy has become a significant challenge of big data. Particularly, by the advantage of big data handling tools availability, huge location data can be managed and processed easily by an adversary to obtain user private information from Location-Based Services (LBS). So far, many methods have been proposed to preserve user location privacy for these services. Among them, dummy-based methods have various advantages in terms of implementation and low computation costs. However, they suffer from the spatiotemporal correlation issue when users submit consecutive requests. To solve this problem, a practical hybrid location privacy protection scheme is presented in this paper. The proposed method filters out the correlated fake location data (dummies) before submissions. Therefore, the adversary can not identify the user's real location. Evaluations and experiments show that our proposed filtering technique significantly improves the performance of existing dummy-based methods and enables them to effectively protect the user's location privacy in the environment of big data.

2015-05-05
Baek, J., Vu, Q., Liu, J., Huang, X., Xiang, Y..  2014.  A secure cloud computing based framework for big data information management of smart grid. Cloud Computing, IEEE Transactions on. PP:1-1.

Smart grid is a technological innovation that improves efficiency, reliability, economics, and sustainability of electricity services. It plays a crucial role in modern energy infrastructure. The main challenges of smart grids, however, are how to manage different types of front-end intelligent devices such as power assets and smart meters efficiently; and how to process a huge amount of data received from these devices. Cloud computing, a technology that provides computational resources on demands, is a good candidate to address these challenges since it has several good properties such as energy saving, cost saving, agility, scalability, and flexibility. In this paper, we propose a secure cloud computing based framework for big data information management in smart grids, which we call “Smart-Frame.” The main idea of our framework is to build a hierarchical structure of cloud computing centers to provide different types of computing services for information management and big data analysis. In addition to this structural framework, we present a security solution based on identity-based encryption, signature and proxy re-encryption to address critical security issues of the proposed framework.