Biblio
Filters: Author is Xu, Yi [Clear All Filters]
Preserving Trajectory Privacy in Driving Data Release. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3099–3103.
.
2022. Real-time data transmissions from a vehicle enhance road safety and traffic efficiency by aggregating data in a central server for data analytics. When drivers share their instantaneous vehicular information for a service provider to perform a legitimate task, a curious service provider may also infer private information it has not been authorized for. In this paper, we propose a privacy preservation framework based on the Hilbert Schmidt Independence Criterion (HSIC) to sanitize driving data to protect the vehicle’s trajectory from adversarial inference while ensuring the data is still useful for driver behavior detection. We develop a deep learning model to learn the HSIC sanitizer and demonstrate through two datasets that our approach achieves better utility-privacy trade-offs when compared to three other benchmarks.
ISSN: 2379-190X
Joint Design of WiFi Mesh Network for Video Surveillance Application. Proceedings of the 14th ACM International Symposium on QoS and Security for Wireless and Mobile Networks. :140–146.
.
2018. The ability to transmit high volumes of data over a long distance makes WiFi mesh networks an ideal transmission solution for remote video surveillance. Instead of independently manipulating the node deployment, channel and interface assignment, and routing to improve the network performance, we propose a joint network design using multi-objective genetic algorithm to take into account the interplay of them. Moreover, we found a performance evaluation method based on the transmission capability of the WiFi mesh networks for the first time. The good agreement of our obtained multiple optimized solutions to the extensive simulation results by NS-3 demonstrates the effectiveness of our design.