Biblio

Filters: Author is Zhao, Qi  [Clear All Filters]
2023-05-12
Qiu, Zhengyi, Shao, Shudi, Zhao, Qi, Khan, Hassan Ali, Hui, Xinning, Jin, Guoliang.  2022.  A Deep Study of the Effects and Fixes of Server-Side Request Races in Web Applications. 2022 IEEE/ACM 19th International Conference on Mining Software Repositories (MSR). :744–756.

Server-side web applications are vulnerable to request races. While some previous studies of real-world request races exist, they primarily focus on the root cause of these bugs. To better combat request races in server-side web applications, we need a deep understanding of their characteristics. In this paper, we provide a complementary focus on race effects and fixes with an enlarged set of request races from web applications developed with Object-Relational Mapping (ORM) frameworks. We revisit characterization questions used in previous studies on newly included request races, distinguish the external and internal effects of request races, and relate requestrace fixes with concurrency control mechanisms in languages and frameworks for developing server-side web applications. Our study reveals that: (1) request races from ORM-based web applications share the same characteristics as those from raw-SQL web applications; (2) request races violating application semantics without explicit crashes and error messages externally are common, and latent request races, which only corrupt some shared resource internally but require extra requests to expose the misbehavior, are also common; and (3) various fix strategies other than using synchronization mechanisms are used to fix request races. We expect that our results can help developers better understand request races and guide the design and development of tools for combating request races.

ISSN: 2574-3864

2019-01-16
Chen, Muhao, Zhao, Qi, Du, Pengyuan, Zaniolo, Carlo, Gerla, Mario.  2018.  Demand-driven Cache Allocation Based on Context-aware Collaborative Filtering. Proceedings of the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing. :302–303.
Many recent advances of network caching focus on i) more effectively modeling the preferences of a regional user group to different web contents, and ii) reducing the cost of content delivery by storing the most popular contents in regional caches. However, the context under which the users interact with the network system usually causes tremendous variations in a user group's preferences on the contents. To effectively leverage such contextual information for more efficient network caching, we propose a novel mechanism to incorporate context-aware collaborative filtering into demand-driven caching. By differentiating the characterization of user interests based on a priori contexts, our approach seeks to enhance the cache performance with a more dynamic and fine-grained cache allocation process. In particular, our approach is general and adapts to various types of context information. Our evaluation shows that this new approach significantly outperforms previous non-demand-driven caching strategies by offering much higher cached content rate, especially when utilizing the contextual information.