Biblio
Filters: Author is Lu, Rongxing [Clear All Filters]
A Practical Black-Box Attack Against Autonomous Speech Recognition Model. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
.
2020. With the wild applications of machine learning (ML) technology, automatic speech recognition (ASR) has made great progress in recent years. Despite its great potential, there are various evasion attacks of ML-based ASR, which could affect the security of applications built upon ASR. Up to now, most studies focus on white-box attacks in ASR, and there is almost no attention paid to black-box attacks where attackers can only query the target model to get output labels rather than probability vectors in audio domain. In this paper, we propose an evasion attack against ASR in the above-mentioned situation, which is more feasible in realistic scenarios. Specifically, we first train a substitute model by using data augmentation, which ensures that we have enough samples to train with a small number of times to query the target model. Then, based on the substitute model, we apply Differential Evolution (DE) algorithm to craft adversarial examples and implement black-box attack against ASR models from the Speech Commands dataset. Extensive experiments are conducted, and the results illustrate that our approach achieves untargeted attacks with over 70% success rate while still maintaining the authenticity of the original data well.
Efficient Privacy-Preserving Similarity Range Query based on Pre-Computed Distances in eHealthcare. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
.
2020. The advance of smart eHealthcare and cloud computing techniques has propelled an increasing number of healthcare centers to outsource their healthcare data to the cloud. Meanwhile, in order to preserve the privacy of the sensitive information, healthcare centers tend to encrypt the data before outsourcing them to the cloud. Although the data encryption technique can preserve the privacy of the data, it inevitably hinders the query functionalities over the outsourced data. Among all practical query functionalities, the similarity range query is one of the most popular ones. However, to our best knowledge, many existing studies on the similarity range query over outsourced data still suffer from the efficiency issue in the query process. Therefore, in this paper, aiming at improving the query efficiency, we propose an efficient privacy-preserving similarity range query scheme based on the precomputed distance technique. In specific, we first introduce a pre-computed distance based similarity range query (PreDSQ) algorithm, which can improve the query efficiency by precomputing some distances. Then, we propose our privacy-preserving similarity query scheme by applying an asymmetric scalar-product-preserving encryption technique to preserve the privacy of the PreDSQ algorithm. Both security analysis and performance evaluation are conducted, and the results show that our proposed scheme is efficient and can well preserve the privacy of data records and query requests.
ISSN: 2576-6813
Practical and Privacy-Aware Truth Discovery in Mobile Crowd Sensing Systems. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :2312–2314.
.
2018. We design a Practical and Privacy-Aware Truth Discovery (PPATD) approach in mobile crowd sensing systems, which supports users to go offline at any time while still achieving practical efficiency under working process. More notably, our PPATD is the first solution under single server setting to resolve the problem that users must be online at all times during the truth discovery. Moreover, we design a double-masking with one-time pads protocol to further ensure the strong security of users' privacy even if there is a collusion between the cloud server and multiple users.