Biblio

Filters: Author is Oliveira, Luis  [Clear All Filters]
2019-03-11
Oliveira, Luis, Luton, Jacob, Iyer, Sumeet, Burns, Chris, Mouzakitis, Alexandros, Jennings, Paul, Birrell, Stewart.  2018.  Evaluating How Interfaces Influence the User Interaction with Fully Autonomous Vehicles. Proceedings of the 10th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. :320–331.
With increasing automation, occupants of fully autonomous vehicles are likely to be completely disengaged from the driving task. However, even with no driving involved, there are still activities that will require interfaces between the vehicle and passengers. This study evaluated different configurations of screens providing operational-related information to occupants for tracking the progress of journeys. Surveys and interviews were used to measure trust, usability, workload and experience after users were driven by an autonomous low speed pod. Results showed that participants want to monitor the state of the vehicle and see details about the ride, including a map of the route and related information. There was a preference for this information to be displayed via an onboard touchscreen device combined with an overhead letterbox display versus a smartphone-based interface. This paper provides recommendations for the design of devices with the potential to improve the user interaction with future autonomous vehicles.
2019-01-31
Seetanadi, Gautham Nayak, Oliveira, Luis, Almeida, Luis, Arzén, Karl-Erik, Maggio, Martina.  2018.  Game-Theoretic Network Bandwidth Distribution for Self-Adaptive Cameras. SIGBED Rev.. 15:31–36.

Devices sharing a network compete for bandwidth, being able to transmit only a limited amount of data. This is for example the case with a network of cameras, that should record and transmit video streams to a monitor node for video surveillance. Adaptive cameras can reduce the quality of their video, thereby increasing the frame compression, to limit network congestion. In this paper, we exploit our experience with computing capacity allocation to design and implement a network bandwidth allocation strategy based on game theory, that accommodates multiple adaptive streams with convergence guarantees. We conduct some experiments with our implementation and discuss the results, together with some conclusions and future challenges.